«Graded automorphisms of the algebra of polynomials in three variables»

Anton Trushin
National Research University Higher School of Economics

15.03 .2023

Introduction

Let \mathbb{K} be an algebraically closed field of characteristic zero and let $\mathcal{A}=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$.

Definition

An automorphism of the algebra \mathcal{A} is elementary if it has the following form

$$
\varphi=\left(x_{1}, \ldots, x_{i-1}, x_{i}+F, x_{i+1}, \ldots, x_{n}\right)
$$

where $F \in \mathbb{K}\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$.

Definition

An affine automorphism of the algebra \mathcal{A} is an automorphism φ of the form
$x_{i} \mapsto \sum_{j=1}^{n} c_{i j} x_{j}+b_{i}$. If all $b_{i}=0$, we call φ linear.

Introduction

We call an automorphism φ tame if it is the composition of elementary and linear automorphisms. An automorphism is said to be wild if it is not tame. The problem of existence of wild automorphisms is now solved for spaces of dimension less than four:

- For algebra $\mathbb{K}[x]$ automorphism group consists of affine automorphisms: $x \mapsto \lambda x+c$. All of them are tame.
- In 1942 Jung proved that the algebra $\mathbb{K}[x, y]$ admits no wild automorphisms.
- In 1972 Nagata constructed the following automorphism σ of $\mathbb{K}[x, y, z]$

$$
\left\{\begin{array}{l}
\sigma(x)=x-2\left(y^{2}+x z\right) x-\left(y^{2}+x z\right)^{2} z \\
\sigma(y)=y+\left(y^{2}+x z\right) z \\
\sigma(z)=z
\end{array}\right.
$$

In 2004 Shestakov and Umirbaev proved that the Nagata automorphism gives an example of a wild automorphism for $n=3$.
Notice, that Nagata automorphism preserves following grading:
$(\operatorname{deg}(x), \operatorname{deg}(y), \operatorname{deg}(z))=(3,1,-1)$.

Graded-wild automorphisms

Let G be a commutative group. Then a G-grading Γ of the algebra \mathcal{A} is a decomposition \mathcal{A} into a direct sum of linear subspaces $\mathcal{A}=\bigoplus_{g \in G} \mathcal{A}_{g}$, such that $\mathcal{A}_{g} \mathcal{A}_{h} \subset \mathcal{A}_{g h}$. Subspaces \mathcal{A}_{g} are called homogeneous components and all elements of \mathcal{A}_{g} are called homogeneous. If f belongs to \mathcal{A}_{g} we denote $\operatorname{deg}_{\Gamma}(f)=g$. If $G=\mathbb{Z}$, for an arbitrary $f=\sum_{g} f_{g}, f_{g} \in \mathcal{A}_{g}$ we denote by $\operatorname{deg}_{\Gamma}(f)$ the maximum g such that $f_{g} \neq 0$. We say that an automorphism φ of the algebra \mathcal{A} respects G-grading Γ if for all $g \in G$ the image of the subspace \mathcal{A}_{g} under φ is contained in \mathcal{A}_{g}. Such an automorphism is called graded.

Definition

If a graded automorphism φ can be decomposed to a composition of graded elementary and linear automorphisms then φ is called graded-tame. Other graded automorphisms are called graded-wild.

Here we will consider the case of homogeneous coordinates.

Nagata automorphism and Anick's automorphism

Nagata automorphism is wild so it is graded-wild.
The known candidate to be nontame in $\operatorname{Aut}\left(\mathbb{K}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]\right)$ was the Anick automorphism:

$$
\left\{\begin{array}{l}
\zeta\left(y_{1}\right)=y_{1} ; \\
\zeta\left(y_{2}\right)=y_{2}+y_{1}\left(y_{1} y_{4}-y_{2} y_{3}\right) \\
\zeta\left(y_{3}\right)=y_{3} \\
\zeta\left(y_{4}\right)=y_{4}+y_{3}\left(y_{1} y_{4}-y_{2} y_{3}\right)
\end{array}\right.
$$

In 2008 Arzhantsev and Gaifullin proved that Anick's automorphism is graded-wild with grading $\left(\operatorname{deg}\left(y_{1}\right), \operatorname{deg}\left(y_{2}\right), \operatorname{deg}\left(y_{3}\right), \operatorname{deg}\left(y_{4}\right)\right)=(1,1,-1,-1)$.

Two variables and positive gradings

Proposition

Let $\widetilde{\Gamma}$ be a grading by an abelian group of the polynomial algebra in two variables. Then all graded automorphisms of $\mathcal{A}=\mathbb{K}[x, y]$ are graded-tame with respect to $\widetilde{\Gamma}$.

Proposition

Let degree of x_{k} be a positive integer for all k. Then all graded automorphisms of the algebra $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ are graded-tame.

Proof.

Without loss of generality, we can assume that $\operatorname{deg} x_{1} \leqslant \ldots \leqslant \operatorname{deg} x_{n}$.
Let $\operatorname{deg} x_{n_{k-1}}<\operatorname{deg} x_{n_{k-1}+1}=\ldots=\operatorname{deg} x_{n_{k}}<\operatorname{deg} x_{n_{k}+1}$. Then

$$
x_{i} \mapsto L_{i}\left(x_{n_{k-1}+1}, \ldots, x_{n_{k}}\right)+f_{i}\left(x_{1}, \ldots, x_{n_{k-1}}\right), n_{k-1}<i \leqslant n_{k}
$$

Three variables

Let us consider \mathbb{Z}-grading of $\mathbb{K}[x, y, z]$.

Remark

In 1995 Koras and Russel solved linearization problem for 3 variables and 1-dimensional torus, so we can assume coordinates homogeneous in any case.

If we divide all $\operatorname{deg}_{\Gamma} x, \operatorname{deg}_{\Gamma} y$ and $\operatorname{deg}_{\Gamma} z$ by their greatest common divisor, then we obtain a new \mathbb{Z}-grading which admits a graded-wild automorphism if and only if Γ does. Therefore, we can assume $\left(\operatorname{deg}_{\Gamma}(x), \operatorname{deg}_{\Gamma}(y), \operatorname{deg}_{\Gamma}(z)\right)=(a, b,-c)$, where $a, b, c \geq 0, a \geq b$ and $\operatorname{gcd}(a, b, c)=1$ or $(a, b,-c)=(0,0,0)$.

Theorem (Trushin)

The grading Γ admits graded-wild automorphisms if and only if one of the following occures

- $(a, b, c)=(0,0,0)$.
- a, b, c strictly positive, $a=q b+p c$ for some integers $p \geq 1$ and $q \geq 2$.

Three variables

Let us assume $\left(\operatorname{deg}_{\Gamma}(x), \operatorname{deg}_{\Gamma}(y), \operatorname{deg}_{\Gamma}(z)\right)=(a, b,-c)$, where $a, b, c>0, a \geq b$ and $\operatorname{gcd}(a, b, c)=1$ and let us consider two subgroups of $\operatorname{Aut}_{\Gamma}(\mathbb{K}[x, y, z])$:

$$
\mathrm{E}=\left\{\varphi \in \operatorname{Aut}_{\Gamma}(\mathbb{K}[x, y, z]) \mid \varphi(z)=z\right\}, \quad \mathrm{T}=\{(x, y, \lambda z) \mid \lambda \neq 0\}
$$

Then

Lemma

The group $\operatorname{Aut}_{\Gamma}(\mathbb{K}[x, y, z])$ is isomorphic to the semidirect product $\mathrm{E} \lambda \mathrm{T}$.

Three variables

The plane $\mathrm{Y}=\mathbb{V}(z-1)$ is invariant under automorphisms from the subgroup E . Therefore, there exists a homomorphism $\alpha: \mathrm{E} \rightarrow \operatorname{Aut}(\mathbb{K}[u, v])$, where $u=\left.x\right|_{\mathrm{Y}} ; v=\left.y\right|_{\mathrm{Y}}$, given by formula $\alpha(f, g, z)=(f(u, v, 1), g(u, v, 1))$. Since f and g homogeneous, α is injective.

Consider the grading $\widetilde{\Gamma}$ of $\mathbb{K}[u, v]$ by the cyclic group \mathbb{Z}_{c} of order c such that $\left(\operatorname{deg}_{\widetilde{\Gamma}}(u), \operatorname{deg}_{\widetilde{\Gamma}}(v)\right)=(\bar{a}, \bar{b})$, where \bar{a} and \bar{b} are the images of a and b under the natural homomorphism from \mathbb{Z} to \mathbb{Z}_{c}.

Remark

Let $\varphi \in \mathrm{E}$. Then the automorphism $\widetilde{\varphi}=\alpha(\varphi) \in \operatorname{Aut}(\mathbb{K}[u, v])$ preserves the grading $\widetilde{\Gamma}$.
We say that the automorphism $\widetilde{\varphi}$ of $\mathbb{K}[u, v]$ can be lifted to an automorphism of \mathcal{A} if the preimage $\alpha^{-1}(\widetilde{\varphi})$ is not empty.

Three variables

Let $\widetilde{\varphi}=(\widetilde{f}, \widetilde{g}) \in \operatorname{Aut}_{\widetilde{\Gamma}}(\mathbb{K}[u, v])$. Then $\alpha^{-1}(\widetilde{\varphi})=\varnothing$ if and only if the polynomial \widetilde{f} contains a monomial v^{q} such that $b q<a$ or the polynomial \widetilde{g} has nonzero free term.

Remark

We can assume that $\operatorname{gcd}(b, c)=1$.
Let us put $\widehat{q}=\max \{q \in \mathbb{Z} \mid b q \equiv a(\bmod c), b q<a\}$
$\left(=\max \left\{q \in \mathbb{Z} \mid \alpha^{-1}\left(u+v^{q}, v\right)=\varnothing\right\}\right)$.

Example

Let $(\operatorname{deg}(x), \operatorname{deg}(y), \operatorname{deg}(z))=(3,1,-1)$, then the automorphism $\left(u+v^{2}, v\right)$ can not be lifted and $\widehat{q}=2$.

Three variables

Lemma

Let $\varphi \in \mathrm{E}$ is graded-tame automorphism and let $\widetilde{\varphi}=\alpha(\varphi)$. Then $\widetilde{\varphi}(u)=\lambda u+G$, where $G \in(u, v)^{\widehat{q}+c}$.

Proposition

If $\widehat{q} \geq 2$, then the grading Γ admits a graded-wild automorphism of the algebra $\mathbb{K}[x, y, z]$.

Proof.

Let $\tau=\left(u+v^{\widehat{q}}, v\right)$ and let $\phi=\left(u, v+u^{\widehat{l}}\right)$, where \widehat{l} is the smallest possible. Then

$$
\tau^{-1} \circ \phi \circ \tau(u)=u+v^{\widehat{q}}-\left(v+\left(u+v^{\widehat{q}}\right)^{\hat{l}}\right)^{\widehat{q}}=u-\widehat{q} v^{\widehat{q}-1} u^{\hat{l}}+F,
$$

where the polynomial $F \in I^{\widehat{l}+\widehat{q}}$. So automorphism $\tau^{-1} \circ \phi \circ \tau$ is wild.

Example

Let $\tau=\binom{u+v^{2}}{v} \in W$ and let $\theta=\binom{u}{v+u} \in D$. Then we have:

$$
\tau^{-1} \circ \theta \circ \tau=\binom{u-u^{2}-v^{4}-2 u v-2 v^{3}-2 u v^{2}}{v+u+v^{2}}
$$

Corresponding automorphism of the polynomial algebra in three variables is Nagata automorphism:

$$
\sigma=\alpha^{-1}\left(\tau^{-1} \circ \theta \circ \tau\right)=\left(\begin{array}{c}
x-x^{2} z^{3}-y^{4} z-2 x y z-2 y^{3}-2 x y^{2} z^{2} \\
y+x z^{2}+y^{2} z \\
z
\end{array}\right)
$$

Generator system

Denote the degree of the smallest monomial in a polynomial in one variable f as $\operatorname{deg}(f)$. Consider the following sets of $\widetilde{\Gamma}$-graded automorphisms of the algebra $\mathbb{K}[u, v]$:

$$
\begin{gathered}
D=\left\{\left(u, \lambda v+u^{k}\right) \mid k a \equiv b(\bmod c), \lambda \in \mathbb{K}^{\times}\right\} \\
U=\left\{(\lambda u+f(v), v) \mid \operatorname{deg}_{\widetilde{\Gamma}}(f(v))=\bar{a}, \underline{\left.\operatorname{deg}(f)>\widehat{q}, \lambda \in \mathbb{K}^{\times}\right\}}\right. \\
W=\left\{(\lambda u+f(v), v) \mid \operatorname{deg}_{\widetilde{\Gamma}}(f(v))=\bar{a}, \operatorname{deg}(f) \leq \widehat{q}, \lambda \in \mathbb{K}^{\times}\right\} .
\end{gathered}
$$

Lemma

For elementary automorphisms $\tau \in W, \theta \in D$, there exists an automorphism $s_{\tau, \theta} \in W$ such that the automorphism $s_{\tau, \theta} \circ \tau^{-1} \circ \theta \circ \tau$ lifts to a space automorphism.

Generator system

Let us introduce the following notation:
$\tau_{\theta}=s_{\tau, \theta} \circ \tau^{-1} ;$
$S=\left\{\tau_{\theta} \circ \theta \circ \tau \mid \tau \in W, \theta \in D\right\}$.

Lemma

The group $\widetilde{E}=\alpha(E)$ is generated by the subgroup U and the set S.

Theorem (Trushin)

Automorphisms of the algebra $\operatorname{Aut}_{\Gamma}(\mathbb{K}[x, y, z])$ are generated by group $\alpha^{-1}(U)$, automorphisms of the form $\alpha^{-1}\left(\tau_{\theta} \circ \theta \circ \tau\right)$, where $\tau \in W, \theta \in D$ and group $\mathrm{T}=\{(x, y, \lambda z) \mid \lambda \neq 0\}$.

Example

Let us present the general form of an automorphism of the form $\tau_{\theta} \circ \theta \circ \tau$. Let $\tau=\binom{\lambda_{1} u+\nu v^{2}}{v} \in W$ and let $\theta=\binom{u}{\lambda_{2} v+\mu u^{k}} \in D$. Then

$$
\tau^{-1} \circ \theta \circ \tau=\binom{u+\frac{\nu}{\lambda_{1}} v^{2}-\frac{\nu}{\lambda_{1}}\left(\lambda_{2} v+\mu\left(\lambda_{1} u+\nu v^{2}\right)^{k}\right)^{2}}{\lambda_{2} v+\mu\left(\lambda_{1} u+\nu v^{2}\right)^{k}}
$$

The coefficient of v^{2} in the polynomial $\tau^{-1} \circ \theta \circ \tau(u)$ is equal to $\frac{\left(1-\lambda_{1}^{2}\right) \nu}{\lambda_{1}}$. Thus, the automorphism $\tau_{\theta} \circ \theta \circ \tau$ is equal to $s_{\tau, \theta} \circ \tau^{-1} \circ \theta \circ \tau$, where

$$
s_{\tau, \theta}=\binom{u-\frac{\left(1-\lambda_{1}^{2}\right) \nu}{\lambda_{1} \lambda_{2}^{2}} v^{2}}{v} .
$$

Jung's theorem proof

Let $\varphi=(f, g)$ be an automorphism of the algebra $\mathcal{A}=\mathbb{K}[x, y]$. Consider the mapping $\delta_{f}: \mathcal{A} \rightarrow \mathcal{A}$ such that $\delta_{f}(h)=J(f, h)$. This map is linear and satisfies the Leibniz rule, so it is a derivation, moreover it is LND. Let us denote by \widehat{f} the top homogeneous component of f with respect to \mathbb{Z}-grading Γ. Then $\widehat{f}=C x^{\alpha} y^{\beta} \prod\left(y^{q}-\lambda_{j} x^{p}\right)$. Notice, that $\delta_{\widehat{f}}$ is also an LND. Kernel of $\delta_{\widehat{f}}$ is factorially closed and $\delta_{\widehat{f}}(\widehat{f})=J(\widehat{f}, \widehat{f})=0$ that is $\widehat{f} \in \operatorname{ker} \delta_{\widehat{f}}$. Transcendence degree of ker $\delta_{\widehat{f}}$ over \mathbb{K} is equal to 1 , so $\widehat{f}=C\left(y^{q}-\lambda x^{p}\right)^{k}, \lambda \neq 0$. We have $\bar{\delta}(x)=-q y^{q-1}$, $\bar{\delta}(y)=-\lambda p x^{p-1}$. If $p>1$ and $q>1$, then x divides $\partial(y)$ and y divides $\partial(x)$ so $\partial(x)=0$ or $\partial(y)=0$. Since the transcendence degree of $\operatorname{ker} \delta_{\widehat{f}}$ over \mathbb{K} is equal to 1 , at least one of p and q is equal to 1 . If $p=1$, let us consider the automorphism $\psi=\left(x+\frac{1}{\lambda} y^{q}, y\right)$. Then $\varphi \circ \psi(x)=s$, where $s=f\left(x+\frac{1}{\lambda} y^{q}, y\right)$. Since this automorphism is homogeneous with respect to the grading Γ, one of the vertices is deleted and the area of coordinate f became smaller.

Two variables graded case proof

Let $\varphi=(f, g)$ be a $\widetilde{\Gamma}$-graded automorphism of \mathcal{A}. In the proof of Jung's Theorem we consider a grading Γ of \mathcal{A} and we show, that the top homeneous component of f with respect to Γ is $\widehat{f}=C\left(y^{q}-\lambda x\right)^{k}, \lambda \neq 0$. Also we show that the automorphism Let us prove that $\psi=\left(x+\frac{1}{\lambda} y^{q}, y\right)$ is also graded with respcet to $\widetilde{\Gamma}$. Since φ is graded, f is homogeneous. So all monomials of \widehat{f} has the same degree. But

$$
\widehat{f}=C\left(y^{q}-\lambda x\right)^{k}=C\left(y^{q k}-k \lambda x y^{q(k-1)}+\ldots\right) .
$$

So $\operatorname{deg} y^{q k}=\operatorname{deg} x y^{q(k-1)}$. Hence, $\operatorname{deg} x=q \operatorname{deg} y$. Therefore, ψ is graded. We prove following

Theorem

Let $\widetilde{\Gamma}$ be a grading by an abelian group of the polynomial algebra in two variables. Then all graded automorphisms of $\mathcal{A}=\mathbb{K}[x, y]$ are graded-tame with respect to $\widetilde{\Gamma}$.

Zeros in grading

If $c=0, a>b$, then $z \mapsto \lambda z, y \mapsto \mu y$, and hence all automorphisms are tame. If $a=b, c=0$, then any automorphism of φ has the form $\varphi=(A(z) x+B(z) y, C(z) x+D(z) y, \kappa z+\mu)$, and the matrix $\Lambda=\left(\begin{array}{ll}A(z) & B(z) \\ C(z) & D(z)\end{array}\right)$ is non-degenerate for all z, so $\operatorname{det} \Lambda=A(z) D(z)-C(z) D(z)=\lambda \in \mathbb{K}^{\times}$. Hence the greatest common divisor $A(z)$ and $C(z)$ in the ring $\mathbb{K}[z]$ is equal to one, so we can apply Euclid's algorithm to $A(z)$ and $C(z)$. Now, we reduce φ to the form $\varphi=(A(z) x+B(z) y, C(z) x+D(z) y, z)$ and then by composition of elementary automorphisms of the form $\left(x-y q_{k}, y, z\right),\left(x, y-x q_{k}, z\right)$ we get that φ has the form $(x+\widetilde{B}(z) y, \widetilde{C} y, z)$. It is clear that this automorphism decomposes into a composition of elementary automorphisms.

Zeros in grading

Now, if $b=0, a \neq 0, c \neq 0$, then $x \mapsto \lambda_{1} x, z \mapsto \lambda_{2} z$, hence all graded automorphisms are graded-tame.
Now let $a \neq 0, b=c=0$. Then $x \mapsto \lambda x$; the images of the variables y and z for any automorphism do not depend on x, and hence, by Jung Theorem, all graded automorphisms are graded-tame.
In the case of strictly positive and strictly negative gradings, all graded automorphisms are graded-tame. So

Lemma

Suppose at least one number among a, b and c equals zero. Let $(a, b, c) \neq 0$. Then there are no graded-wild automorphisms.

目 I．Shestakov and U．Umirbaev，The tame and the wild automorphisms of polynomial rings in three variables， J．Amer．Math．Soc． 17 （2004），197－227．

围 I．V．Arzhantsev and S．A．Gaifullin，Cox rings，semigroups and automorphisms of affine algebraic varieties，Sbornik：Mathematics，201：1（2010），1－21．
（ H．W．E．Jung，Über ganze birationale transformationen der Ebene，J．reine， angew．Math． 184 （1942）161－174．

图 A．Trushin，Gradings allowing wild automorphisms， Journal of Algebra and Its Applications 2022 （2021）．
（ A．Trushin，Graded automorphisms of the algebra of polynomials in three variables， 2023.

