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First, we will fix some notations.

k : an alg. closed field of char. 0

B : an affine k-domain

Aut(B) : set of k-algebra automorphisms on B.
LND(B) : set of locally nilpotent derivations on B.
Ker(0) : kernel of LND 4.
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First, we will fix some notations.

k : an alg. closed field of char. 0

B : an affine k-domain

Aut(B) : set of k-algebra automorphisms on B.
LND(B) : set of locally nilpotent derivations on B.
Ker(0) : kernel of LND 4.

There is a natural action of Aut(B) on LND(B) defined by
a-§ =ada"l, for a € Aut(B) and § € LND(B).

Given § € LND(B), the stabilizer of § under the above action, i.e., the
subgroup {o € Aut(B) : 0§ = do} of Aut(B), is called the isotropy
subgroup of B with respect to § and will be denoted by

Aut(B)s or Aut(9).
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The big unipotent subgroup U(0)

@ Every 6 € LND(B) induces an element of Aut(B) via the
1.
exponential map, defined as exp(¢) := Z’_—I(S’.
>0l

e For any LND §, each of its replicas f§ (f € Ker(d)) is also an LND.

@ Exponents of all replicas of § form a commutative subgroup
U(6) := {exp(fd) | f € Ker(d)}, called the big unipotent subgroup
corresponding to 4.

@ The correspondence f <+ exp(fd) induces an isomorphism between
U(8) and (Ker(d),+). It is easy to see that for any § € LND(B),
the big unipotent group U(4) is a subgroup of Aut(d).
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The big unipotent subgroup U(0)

@ Every 6 € LND(B) induces an element of Aut(B) via the
1.
exponential map, defined as exp(¢) := Z’_—I(S’.
>0l

e For any LND §, each of its replicas f§ (f € Ker(d)) is also an LND.

@ Exponents of all replicas of § form a commutative subgroup
U(6) := {exp(fd) | f € Ker(d)}, called the big unipotent subgroup
corresponding to 4.

@ The correspondence f <+ exp(fd) induces an isomorphism between
U(8) and (Ker(d),+). It is easy to see that for any § € LND(B),
the big unipotent group U(4) is a subgroup of Aut(d).

Question : Is U(d) & Aut()?
o Yes, if when B admits an LND 4§’ which commutes yvith 6 and
Ker(0) # Ker(0') (for example, B = k[X, Y], 6 = 5 and
& = i). Indeed, if such a ¢’ exists, then, for any

Y
f € Ker(d) NKer(d'), exp(fd’) is an element of Aut(d) \ U(4).
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Some basic properties

Question : Which automorphisms of B are in Aut(d) ?
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Some basic properties

Question : Which automorphisms of B are in Aut(d) ?

o ‘Let A=Ker(d). Then ¢ € Aut(d) = ¢|a € Aut(A).
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Some basic properties

Question : Which automorphisms of B are in Aut(d) ?

o ‘Let A=Ker(d). Then ¢ € Aut(d) = ¢|a € Aut(A).
0 0

Converse is not true. Take B = k[X,Y,Z] and § = Xa—y + 2Y6—Z.

Then A = k[X, XZ — Y?]. Define ¢ € AutB by ¢(X) = 2X,
d(Y) =Y and ¢(Z) = Z/2. Then ¢|s € Aut(A). But
$8(Z) =2Y £ Y = 86(Z). So 6 ¢ Aut(s).
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Some basic properties

Question : Which automorphisms of B are in Aut(d) ?

o ‘Let A=Ker(d). Then ¢ € Aut(d) = ¢|a € Aut(A).
0 0

Converse is not true. Take B = k[X,Y,Z] and § = Xa—y + 2Y6—Z.

Then A = k[X, XZ — Y?]. Define ¢ € AutB by ¢(X) = 2X,
d(Y) =Y and ¢(Z) = Z/2. Then ¢|s € Aut(A). But
$8(Z) =2Y £ Y = 86(Z). So 6 ¢ Aut(s).

o Let 6102 = 0201
Then f € Ker(d1) NKer(d2) = exp(fd1) € Aut(dn).
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Some basic properties

Question : Which automorphisms of B are in Aut(d) ?

o ‘Let A=Ker(d). Then ¢ € Aut(d) = ¢|a € Aut(A).
0 0

Converse is not true. Take B = k[X,Y,Z] and § = Xa—y + 2Y6—Z.

Then A = k[X, XZ — Y?]. Define ¢ € AutB by ¢(X) = 2X,
d(Y) =Y and ¢(Z) = Z/2. Then ¢|s € Aut(A). But
$8(Z) =2Y £ Y = 86(Z). So 6 ¢ Aut(s).

o Let 6102 = 0201
Then f € Ker(d1) NKer(d2) = exp(fd1) € Aut(dn).

o Let Hr := {0 € Aut(A) | 0(f) = f}. Then
CAut(g)(eXp(fé)) = Hf and

Caui(5)(U(0)) = {0 € Aut(d) | 0|a = ida}.
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Almost rigid domains

Question : What happens when all LNDs are replicas of a canonical one ?

@ An affine k-domain B is said to be almost rigid if there exists
D € LND(B) such that every § € LND(B) can be written as
d = hD, for some h € Ker(D). Moreover, D is called the canonical
LND on B.

@ For an almost rigid domain B with B* = k*, if D is a canonical
LND and ¢ € Aut(B), then ¢D¢~1 = AD, for some \ € k*.
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Almost rigid domains

Question : What happens when all LNDs are replicas of a canonical one ?

@ An affine k-domain B is said to be almost rigid if there exists
D € LND(B) such that every § € LND(B) can be written as
d = hD, for some h € Ker(D). Moreover, D is called the canonical
LND on B.
@ For an almost rigid domain B with B* = k*, if D is a canonical
LND and ¢ € Aut(B), then ¢D¢~1 = AD, for some \ € k*.
k[X,Y,Z]
(F(X)Y = P(2))
e (Bianchi-Veloso (2017))
B is almost rigid with the canonical LND D given by
D(x) =0, D(y) = 92 and D(z) = f(x).
o (Baltzar-Veloso (2021))

Let 6 € LND(B). Then Aut(d) is generated by a finite cyclic group
of the form

Example : B := , where degy f > 1. Then

{(Ax,y,z) | A€ k" and A* =1} and U(D),
where f(X) = X/h(X*) such that h € k[l has a non-zero root.
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A k-algebra B is said to be a generalised Danielewski surface over k if B
is isomorphic to the k-algebra

k[X, Y1, Ya]
(XY, — P(X, 1))’

Ba.p =

where d > 2 and r := degy, (P) > 2. If P(X, Y1) = H (Y1 —ai(X)),

where g;(X) € k[X], then the surface By p is called a generallsed
Danielewski surface in standard form.
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Definition

A k-algebra B is said to be a generalised Danielewski surface over k if B
is isomorphic to the k-algebra

k[X, Y1, Ya]
(XY, — P(X, 1))’

Ba.p =

where d > 2 and r := degy, (P) > 2. If P(X, Y1) = H (Y1 —ai(X)),

where g;(X) € k[X], then the surface By p is called a generallsed
Danielewski surface in standard form.

B4 p is an almost rigid domain with the canonical Ind Dy p, given by
g 0 oP 0
dyi | Oy dyr’

The automorphism group of By p was studied by A. Dubouloz and
P-M. Poloni ( , 2009).
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Aut( ijp)

S,

: the symmetric group of r elements. id : the identity permutation

e Every automorphism ® in Aut(By,p) is uniquely determined by the
datum Ao = (v, 1,2, b(x)) € S, x k* x k* x k[x], such that the
polynomial ¢(x) := o4 (j)(ax) — poi(x) does not depend on the index
i=1,2,...r

e & is induced by W € Aut(k[X, Y1, Y2]) given by

X —=aX, Yy = uYr+E(X) and

r

Yo b S Yot o (H(;m +E(X) — 0i(aX)) — (X, Yl)),

1
(aX)d
where &(X) = c(X) + X9b(X).
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Aut( ijp)

S,

the symmetric group of r elements. id : the identity permutation

Every automorphism ¢ in Aut(By, p) is uniquely determined by the
datum Ao = (v, 1,2, b(x)) € S, x k* x k* x k[x], such that the
polynomial ¢(x) := o4 (j)(ax) — poi(x) does not depend on the index
i=1,2,...,r

® is induced by W € Aut(k[X, Y1, Y2]) given by

X —=aX, Yy = uYr+E(X) and

r

Yo b S Yot o (H(;m +E(X) — 0i(aX)) — (X, Yl)),

1
(X7
where &(X) = c(X) + X9b(X).

The composition @, o ®; of two automorphisms ®; and ®, of By p
with data .Aq;l = (oq,ul, ai, bl(X)) and .Acpz = (ozg,u,g, a, bQ(X))
respectively is the automorphism of By p with datum

A= (azal, Uopi1, 3231, %/,Lgbl(X) + bg(alx)).
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Aut( ijp)

o Let U, H, S be the subgroups of Aut(By,p) consisting of the
automorphisms corresponding to the data of the type
(id,1,1,b(x)), (id,1,a,0) and (e, sz, 1,0) respectively.

o Allt(Bd‘p) = (S X H) x U.
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AUt(Ddﬁp)

Let § € LND(By,p) and o € Aut(By,p). Then the following are
equivalent.

@ a € Aut(d).
o da(y1) = ad(y1).
o da(y2) = ad(y2)-
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Aut(Ddﬁp)

Let § € LND(By,p) and o € Aut(By,p). Then the following are
equivalent.

@ a € Aut(d).
o da(y1) = ad(y1).
o da(y2) = ad(y2)-

For G < Aut(Bg,p), define G5 := G N Aut(d).

Theorem I(-,Lahiri)

/
Let 6 = f(x)D4.p, where f(x) = > a;x" € k[x] (n;,/ € NU {0}, a; € k*
i=0

for each 7). Suppose G := Aut(d) and n:= GCD(d + ng,...,d + n;).
Then the following statements hold.

@ The unipotent group U C G and hence Us = U.

o If a € k* with a9 # 1 for any g € {1,...,d — 1}, then
(id,1,a,0) € G if and only if a” =1 and n > d.
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Aut(Dg p)

o If a € k* with a% = 1 for some minimal qo € {2,...,d — 1}, then
(id7 1, a,O) € G if and only if qo | n.
o Hs = 7Z,.

@ The subgroup S5 = {ldg, , }.
@ The isotropy subgroup G = (H x S)5 x U.
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Aut(Dg p)

o If a € k* with a% = 1 for some minimal qo € {2,...,d — 1}, then
(id7 1, a,O) € G if and only if qo | n.
o Hs = 7Z,.

@ The subgroup S5 = {ldg, , }.
@ The isotropy subgroup G = (H x S)5 x U.

o If § = Dy p, then U(0) & Aut(d). Indeed, if w € k be a primitive
d-th root of unity, then (id,1,w,0) (# Idg, ) € Aut(d).

@ However, it may happen that Aut(d) = U, when § is a replica of
Dg4.p. For example, if § = (x + x?)Dg,p, then (H x S); = {ldg, ,}.
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An affine algebraic variety Veon € K™ is called a Danielewski variety
with constant coefficients if

K[Y1, Y2, ..., Ym, Z]
(A Y2 ... Yy — P(2))

)

K[Vcon] -
where m, ki, ..., kn,deg,(P) > 2, P monic.

These varieties were introduced by Dubouloz (2007) as
counterexamples to the Generalized Zariski Cancellation Problem.
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An affine algebraic variety Veon € K™ is called a Danielewski variety
with constant coefficients if

K[Vcon] -

where m, ki, ..., kn,deg,(P) > 2, P monic.

These varieties were introduced by Dubouloz (2007) as
counterexamples to the Generalized Zariski Cancellation Problem.

Theorem (Dubouloz)

K[Y1, Ya, ..., Yim, Z]
(YA Y YE — P(2))
K[Y1, Y. .o, Yim, Z]
(VAYSe .Y — P(Z))
(Kay ... s km) # (K, ..., K.), then Veon x K 22 V7

con

and

If K[Veon] =

, such that

K[Veon] =
x K but Veon 2 V"

con-*
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Group actions on V,

Later Gaifullin (2021) studied Aut(Veon) in detail.

@ The stabilizer of the monomial Y;Y,2... Yk» under the natural
diagonal action of the m-dimensional algebraic torus (K*)™ on
K[Y1, Ya2,..., Ym] is isomorphic to the (m — 1)-dimensional torus,
denoted by T. If we consider the trivial action of T on K[Z], then
there is an effective action of T on V.,,. T is called the proper torus
of Veon.-

@ There is a natural action of the symmetric group S, on
K[Y1,..., Ym]. The stabilizer S of the monomial Y;Y,2... Ykn is
isomorphic to the group Sp, X -+ X Sp,,, where m=m; +--- + m,
and for each j € {1,...,n}, Sp, permutes the m; many Y;'s with
same k;j. If we consider the trivial action of S on K[Z], then there is
an effective action of S on Vo,. This group S is called the
symmetric group of Veg,.

Nikhilesh Dasgupta, NMIMS



Different types of actions on V.,

o If P(Z) = Z¢, there is also an effective action of an one-dimensional
torus K* acting by

t- (Y1, Y2y s Ym, 2) = (tdyl,y2...,ym,tz), for all t € K*.

If P(Z) # Z? and v is the maximal integer such that there exists a
polynomial Q(Z) € K[Z] and a non-negative integer u such that
P(Z) = Z"Q(Z"), then there is an action of Z, (considered as a
subgroup of k*) on V., given by

t- (Y17}/27 s 7}/m72) = (tu}/h)’z ey Ymy tZ), where t¥ = 1.

In each of these cases, the groups K* and Z, are called the
additional quasitorus of V.o, and denoted by .
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Different types of actions on V.,

o If P(Z) = Z¢, there is also an effective action of an one-dimensional
torus K* acting by

t- (Y1, Y2y s Ym, 2) = (tdyl,y2...,ym,tz), for all t € K*.

If P(Z) # Z? and v is the maximal integer such that there exists a
polynomial Q(Z) € K[Z] and a non-negative integer u such that
P(Z) = Z"Q(Z"), then there is an action of Z, (considered as a
subgroup of k*) on V., given by

t- (Y17}/27 s 7}/m72) = (tu}/h)’z ey Ymy tZ), where t¥ = 1.

In each of these cases, the groups K* and Z, are called the
additional quasitorus of V.o, and denoted by .

o K[V on] is an almost rigid domain with the canonical LND

0 0
Deon := P'(2)5— + y52 ... ykn =
> (Z) 0}/1 + .y2 ym 02
o Aut(Veon) =S x ((T x D) x U(Dcon)).



Let 6 = hDcon, where h € K[ya, ..., y¥m] and 6 € T. Then the following
statements are equivalent.

0 30(y1) = 05(y1).
o hf(y1) = y16(h).
e 60(z) = 64(2).
o 0 € Aut(s).

Corollary

Let § = hDcon, for some h € K*. Then Ts = (K*)" " x Z,, where
s = GCD(ky, ..., km).
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Lemma

Let 6 = hDcon, for some h € K[ya,...,¥m] and o € S. Then the
following statements are equivalent.

60 (y1) = o6(y1).

a(h) = h.

0o(z) = 0d(2).

o € Aut(0).

In particular, if h € K*, then S (= S;) is a subgroup of Aut(d).

Let 6 = hDcon, for some h € K[ya, ..., ¥m]. Let ¢ € D. Then

v € Aut(d) & ¢ = [d.
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Aut(Veon) and Aut(Deon)

Aut(Veon) = S x ((T x D) X U(Dgon)).

Theorem I1(-,Lahiri)

The isotropy subgroup Aut(Dcon) can be described as follows.
o If P(Z) = Z, then

Aut(Deon) = S x ((K*)™ ™ % U(Deon))-

o If P(Z) # Z9 and v is the maximal integer such that
P(Z) = Z"Q(Z"), then

Aut(Dcon) & S x (((K*)mf2 X Lgy) X U(DCOH))7

where s = GCD(ko, . . ., km).
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e If P(Z) = Z9, then there exist 01 € T and 0, € D such that
o102 € (T x D)p.,, but neither o1 € Tpeon nor
02 € Dpeon (= {Id}). For example, let

1
o1(V1s- s Ym, 2) = (Eyh AY2, Y3, -+ Ym, Z) and
o2(y1, Y2, -+ Ym 2) = (N1, yo, oo ym, AR2Z), where A € K* be
such that M\ £ 1.

o If P(Z) # Z9 and v > 2 be the maximal integer such that
P(Z) = Z"Q(Z") then there exist o1 € T and o2 € D such that
o105 € (T x D)., but neither o1 € Tpeon nor
02 € Dpeon (= {/d}). For example, let

1
o1(V1s- s Ym, 2) = (EYL)\YZJ/& ey Ym,Z) and

o2(Y1, Y2y« ooy Ymy Z) = ()\kz"yl,yz, ey Yms )\kzz), where A € K* be
such that MV =1 but \* # 1.
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A threefold by Finston and Maubach
Consider the Pham-Brieskorn surface

CIX, Y, Z] 1 1 1

————— here — + — + - < 1.
(X7 + Yb 1 2)’ werea+b+c<

For m,n > 2, we define the following threefold

R[U, V]
(XU - Y7V —1)

Bm,n -

They were introduced by Finston and Maubach in 2008 as another set
of examples to the Zariski Cancellation Problem.
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A threefold by Finston and Maubach
Consider the Pham-Brieskorn surface

CIX, Y, Z] 1 1 1

————— here — + — + - < 1.
(X7 + Yb 1 2)’ werea+b+c<

For m,n > 2, we define the following threefold

R[U, V]
(XU - Y7V —1)

Bm,n -

They were introduced by Finston and Maubach in 2008 as another set
of examples to the Zariski Cancellation Problem. They showed

@ By, is a UFD, but not regular.
o If (m,n) # (m', '), then By, % Boy v but By M = B, 0.
@ B, . is almost rigid with canonical LND

0
Dmn: " — m—.
’ y (9U+X ov
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Aut(Bpm.n)

Theorem (Finston, Maubach)

Aut(Bn, ) is generated by the following elements.

° Qf(x,y,z, u,v) = (x,y,z,u+ f(x,y,z)y", v+ f(x,y, z)x™), for
feR.

1 1
° GZ(X,}/,Z, u, V) — (Mbcxv Macy”uabz’ — U, 7‘/)1 for 2 € (C*

mbc nac
I I
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Aut(Bpm.n)

Theorem (Finston, Maubach)

Aut(Bn, ) is generated by the following elements.
° Qf(x,y,z, u,v) = (x,y,z,u+ f(x,y,z)y", v+ f(x,y, z)x™), for
feR.

1
TV)’ for p € C*.

° 0%(x,y,z,u,v) — (ubex, p*y, ptz, Mm—bcu, o

So Aut(Bnm,n) = C* KU(Dm,p)-

Let T := set of automorphisms induced by the action of C*.

Lemma

Let 0 € hDy, n, where h € R\ {0} and 0 := 0} € T. Then TFAE
6 € Aut(d),

50(1) = 05(1),

d6(v) = 66(v),

M"ac+mbC9(h) = h.
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Aut(6)

Theorem (-,Labhiri)
Let § € hDy, ,, where h € R\ {0}. Then

e Ty is a finite cyclic group.
@ Aut(d) = Ts KU(Dm,n)-

Nikhilesh Dasgupta, NMIMS



Aut(6)

Theorem (-,Labhiri)

Let § € hDy, ,, where h € R\ {0}. Then
e Ty is a finite cyclic group.
@ Aut(d) = Ts KU(Dm,n)-

o If h= > arsx"y°zt, then
r,s,t20,r<a

0,, € Aut(8) < pbelmrntac(nts)tabt — 1,
@ If 6 = Dp,n, then U(J) ; Aut(d) as mbc + nac > 2.

o Let a>2and 6 = (x + x?)Dp,,n. Then T5 = {idg,,} and hence
U(0) = Aut(9).
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Isotropy subgroups in k[

Theorem (Rentschler (1968))[R]
Let D(# 0) € LND(k[X, Y]). There there exists an automorphism

a € Aut(k[X, Y]) and f(X) € k[X] such that aDa~! = f(X)aiY'

Nikhilesh Dasgupta, NMIMS



Isotropy subgroups in k[

Theorem (Rentschler (1968))[R]

Let D(# 0) € LND(k[X, Y]). There there exists an automorphism
a € Aut(k[X, Y]) and f(X) € k[X] such that aDa~! = f(X)aiY'

Theorem (Baltzar, Veloso (2021))[BaV|

Let D = f(X)aiY' where f(X) € k[X]. Then all elements of Aut(D) are

of the form
X . aX+b
Y cY + p(X))’

where a, b, c € k, bc # 0, p(X) € k[X], f(aX + b) = cf(X).
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Isotropy subgroups in k[

Theorem (Rentschler (1968))[R]
Let D(# 0) € LND(k[X, Y]). There there exists an automorphism

a € Aut(k[X, Y]) and f(X) € k[X] such that aDa~! = f(X)aiY'

Theorem (Baltzar, Veloso (2021))[BaV|

Let D = f(X)aiY' where f(X) € k[X]. Then all elements of Aut(D) are

of the form
X . aX+b
Y cY + p(X))’

where a, b, c € k, bc # 0, p(X) € k[X], f(aX + b) = cf(X).
@ If n:=degy f, then c = a".

e Aut(D) = U(%) if and only if
{Blx) | ¢ € Aut(D) and §(f) = A, X € k*} = {id}.
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An elementary result

Let B € LND(kBl) and Dy, D, € LND(B).

U(D;) C Aut(D1) < Ker(D;) = Ker(Ds).
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An elementary result

Let B € LND(kBl) and Dy, D, € LND(B).

U(D;) C Aut(D1) < Ker(D;) = Ker(Ds).

e Aut(D;) = Aut(D:) = Ker(D;) = Ker(D5).

@ Converse need not be true. Let B = k[X,Y,Z], D; = Y@% and
D, = X%. Then Ker(D;) = Ker(D,) = k[X, Y]. Consider the
automorphsim ¢ of B given by

dX, Y, Z)=(X+Y,Y,Z+X).

Then ¢ € Aut(D;) \ Aut(Ds).
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Triangularizable LNDs

Definition
An LND D on B = k¥ is said to be triangularizable if there exists a
coordinate system (X, Y, Z) of B with respect to which D is triangular,

- D(X) =0, D(Y)e k[X] and D(Z) € k[X, Y].
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Triangularizable LNDs

Definition
An LND D on B = k¥ is said to be triangularizable if there exists a

coordinate system (X, Y, Z) of B with respect to which D is triangular,

- D(X) =0, D(Y)e k[X] and D(Z) € k[X, Y].

Theorem IlI(-, Gaifullin)
Let B = kBl and D(# 0) € LND(B). TFAE

@ There exists a locally nilpotent derivation § of rank 1 such that
Exp(d) € Aut(D).

@ D is triangularizable.
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Triangularizable LNDs

An LND D on B = k¥ is said to be triangularizable if there exists a

coordinate system (X, Y, Z) of B with respect to which D is triangular,

- D(X) =0, D(Y)e k[X] and D(Z) € k[X, Y].

Theorem IlI(-, Gaifullin)
Let B = kBl and D(# 0) € LND(B). TFAE

@ There exists a locally nilpotent derivation § of rank 1 such that
Exp(d) € Aut(D).

@ D is triangularizable.

0
Suppose B = k[X,Y,Z] and § = f(X, Y)87' then one can get the
desired coordinate system by applying a "tame” automorphism.
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An Example in k!l

Let B = k[X, Y, Z] and

0 0
A7X67Y+2Y672'

Then
Ker(A) = k[X,F] where F=XZ— Y2

For each t € k*, let D, := tFA. Extend D; to D: € LND(B[W]) by
setting D;(W) = 0. Then

e D, is not triangularizable (Bass (1984) ).

o D, is not triangularizable. (Freudenburg|F]).
e But 9 € Aut(Dy)
ow o

So Theorem Il does not extend to higher dimensions.
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Rank one LNDs

Let B be an affine k-domain and f € B. Define

Aut(B)) .= {0 € Aut(B) | O(f) = Af, for some \ € k*}.
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Rank one LNDs

Let B be an affine k-domain and f € B. Define
Aut(B)) .= {0 € Aut(B) | O(f) = Af, for some \ € k*}.

Theorem IV(-, Gaifullin)

Let B be an affine domain and B* = k*. Let D,0 € LND(B) such that §
has a slice and D = hd for some h € Ker(d) := A. Then

Aut(D) = Aut(A)P £ U(9).
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Rank one LNDs

Let B be an affine k-domain and f € B. Define

Aut(B)) .= {0 € Aut(B) | O(f) = Af, for some \ € k*}.

Theorem IV(-, Gaifullin)

Let B be an affine domain and B* = k*. Let D,0 € LND(B) such that §
has a slice and D = hd for some h € Ker(d) := A. Then

Aut(D) = Aut(A)P £ U(9).

Corollary I(-, Gaifullin)

Let B = kIl and D € LND(B). Then

Aut(D) = Aut(k) <U(D) in the following cases :
@ D is fixed point free.
o D*(X)=D?(Y)=D*2Z)=0.
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A useful Lemma

Let B = kI, D(# 0) € LND(B) and A = Ker(D). Let g be a local slice
of D with D(g) = f € A. If § := D |, then

° 6= f% € LND(A[g]).

@ there exists a injective group homomorphism
& : Aut(D) — Aut(d).

o Aut(8) = Aut(A)H K U(%).

o O(U(D)) = {Exp(hd) | h € A}.
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A useful Lemma

Let B = kI, D(# 0) € LND(B) and A = Ker(D). Let g be a local slice
of D with D(g) = f € A. If 6 := D |, then
0
6 = f— € LND(A[g]).
° = f < LND(Alg))
@ there exists a injective group homomorphism
& : Aut(D) — Aut(d).
o Aut(8) = Aut(A)H K U(%).

o O(U(D)) = {Exp(hd) | h € A}.

Any ¢ € Aut(A)) with ¢(f) = Af (X € k*) can be uniquely extended to
an element of Aut(A[g]) by setting ¢(g) = A\g.
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Rank 2 LNDs

An LND D on the affine domain B is said to be reducible if there exists
b € B such that D(B) C (b)B. Otherwise, D is irreducible.

Nikhilesh Dasgupta, NMIMS



Rank 2 LNDs

Definition
An LND D on the affine domain B is said to be reducible if there exists
b € B such that D(B) C (b)B. Otherwise, D is irreducible.

If Bisa UFD and D € LND(B) then D can be written as a replica of an
irreducible LND, which is unique upto multiplication by a unit.
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Rank 2 LNDs

Definition
An LND D on the affine domain B is said to be reducible if there exists
b € B such that D(B) C (b)B. Otherwise, D is irreducible.

If Bisa UFD and D € LND(B) then D can be written as a replica of an
irreducible LND, which is unique upto multiplication by a unit.

Lemma

Let B = kPl and D € LND(B) be irreducible of rank at most 2. Then
there exists a variable X of B and g € B such that D(g) = f(X).
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Rank 2 LNDs

An LND D on the affine domain B is said to be reducible if there exists
b € B such that D(B) C (b)B. Otherwise, D is irreducible.

If Bisa UFD and D € LND(B) then D can be written as a replica of an
irreducible LND, which is unique upto multiplication by a unit.

Let B = kPl and D € LND(B) be irreducible of rank at most 2. Then
there exists a variable X of B and g € B such that D(g) = f(X).

Let B = k[X, Y, Z], D(# 0) € LND(B) be irreducible of rank 2 and
A =Ker D. Assume that D(X) = 0.

(i) There exist v, g € B such that A = k[X, v] and D(g) = f(X),
0
(i) Aut(d) = Aut(A)") K U(%)

, Where § = D|a[, and



Rank 2 LNDs

Lemma

(iii) if n := degy f, then Aut(A)() =

(X) = aX + b where a € k*, b e k, ¢(f) = a"f, }

¢
{¢ € AUt(A) | 40) = v+ B(X), 1 e k* and B(X) € KX].
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Rank 2 LNDs

Lemma

(iii) if n := degy f, then Aut(A)() =

(X) = aX + b where a € k*, b e k, ¢(f) = a"f, }

¢
{¢ € AUt(A) | 40) = v+ B(X), 1 e k* and B(X) € KX].

Let us look at the following example due to Bass.
D(X)=0, D(Y)=X and DZ=-2Y.

@ D is triangular of rank 2.

e Ker D =A=k[X,v], where v=XZ + Y% and D]y :=6 = X@%'

e AND(B) = (X).
N B(X) = X, \€ Kk,

o 6= {oenu | FV 5 NG00, 500 € ki), )

e Aut(d) = G KU(D).
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Thank you!
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