On isotropy subgroups

Nikhilesh Dasgupta NMIMS

Workshop : Affine Spaces, Algebraic Group Actions and LNDs

First, we will fix some notations.

- k : an alg. closed field of char. 0
- B : an affine k-domain
- $\operatorname{Aut}(B)$: set of k-algebra automorphisms on B.
- $\operatorname{LND}(B)$: set of locally nilpotent derivations on B.
- $\operatorname{Ker}(\delta)$: kernel of LND δ.

First, we will fix some notations.

- k : an alg. closed field of char. 0
- B : an affine k-domain
- Aut (B) : set of k-algebra automorphisms on B.
- LND (B) : set of locally nilpotent derivations on B.
- $\operatorname{Ker}(\delta)$: kernel of LND δ.

There is a natural action of $\operatorname{Aut}(B)$ on $\operatorname{LND}(B)$ defined by $\alpha \cdot \delta=\alpha \delta \alpha^{-1}$, for $\alpha \in \operatorname{Aut}(B)$ and $\delta \in \operatorname{LND}(B)$.
Given $\delta \in \operatorname{LND}(B)$, the stabilizer of δ under the above action, i.e., the subgroup $\{\sigma \in \operatorname{Aut}(B): \sigma \delta=\delta \sigma\}$ of $\operatorname{Aut}(B)$, is called the isotropy subgroup of B with respect to δ and will be denoted by

$$
\operatorname{Aut}(B)_{\delta} \text { or } \operatorname{Aut}(\delta)
$$

The big unipotent subgroup $\mathbb{U}(\delta)$

- Every $\delta \in \operatorname{LND}(B)$ induces an element of $\operatorname{Aut}(B)$ via the exponential map, defined as $\exp (\delta):=\sum_{i \geqslant 0} \frac{1}{i!} \delta^{i}$.
- For any LND δ, each of its replicas $f \delta(f \in \operatorname{Ker}(\delta))$ is also an LND.
- Exponents of all replicas of δ form a commutative subgroup $\mathbb{U}(\delta):=\{\exp (f \delta) \mid f \in \operatorname{Ker}(\delta)\}$, called the big unipotent subgroup corresponding to δ.
- The correspondence $f \leftrightarrow \exp (f \delta)$ induces an isomorphism between $\mathbb{U}(\delta)$ and $(\operatorname{Ker}(\delta),+)$. It is easy to see that for any $\delta \in \operatorname{LND}(B)$, the big unipotent group $\mathbb{U}(\delta)$ is a subgroup of $\operatorname{Aut}(\delta)$.

The big unipotent subgroup $\mathbb{U}(\delta)$

- Every $\delta \in \operatorname{LND}(B)$ induces an element of $\operatorname{Aut}(B)$ via the exponential map, defined as $\exp (\delta):=\sum_{i \geqslant 0} \frac{1}{i!} \delta^{i}$.
- For any LND δ, each of its replicas $f \delta(f \in \operatorname{Ker}(\delta))$ is also an LND.
- Exponents of all replicas of δ form a commutative subgroup $\mathbb{U}(\delta):=\{\exp (f \delta) \mid f \in \operatorname{Ker}(\delta)\}$, called the big unipotent subgroup corresponding to δ.
- The correspondence $f \leftrightarrow \exp (f \delta)$ induces an isomorphism between $\mathbb{U}(\delta)$ and $(\operatorname{Ker}(\delta),+)$. It is easy to see that for any $\delta \in \operatorname{LND}(B)$, the big unipotent group $\mathbb{U}(\delta)$ is a subgroup of $\operatorname{Aut}(\delta)$.

Question: Is $\mathbb{U}(\delta) \varsubsetneqq \operatorname{Aut}(\delta)$?

- Yes, if when B admits an LND δ^{\prime} which commutes with δ and $\operatorname{Ker}(\delta) \neq \operatorname{Ker}\left(\delta^{\prime}\right)$ (for example, $B=k[X, Y], \delta=\frac{\partial}{\partial X}$ and $\delta^{\prime}=\frac{\partial}{\partial Y}$). Indeed, if such a δ^{\prime} exists, then, for any $f \in \operatorname{Ker}(\delta) \cap \operatorname{Ker}\left(\delta^{\prime}\right), \exp \left(f \delta^{\prime}\right)$ is an element of $\operatorname{Aut}(\delta) \backslash \mathbb{U}(\delta)$.

Some basic properties

Question : Which automorphisms of B are in $\operatorname{Aut}(\delta)$?

Some basic properties

Question : Which automorphisms of B are in $\operatorname{Aut}(\delta)$?

- 'Let $A=\operatorname{Ker}(\delta)$. Then $\left.\phi \in \operatorname{Aut}(\delta) \Rightarrow \phi\right|_{A} \in \operatorname{Aut}(A)$.

Question : Which automorphisms of B are in $\operatorname{Aut}(\delta)$?

- 'Let $A=\operatorname{Ker}(\delta)$. Then $\left.\phi \in \operatorname{Aut}(\delta) \Rightarrow \phi\right|_{A} \in \operatorname{Aut}(A)$. Converse is not true. Take $B=k[X, Y, Z]$ and $\delta=X \frac{\partial}{\partial Y}+2 Y \frac{\partial}{\partial Z}$.
Then $A=k\left[X, X Z-Y^{2}\right]$. Define $\phi \in$ Aut B by $\phi(X)=2 X$, $\phi(Y)=Y$ and $\phi(Z)=Z / 2$. Then $\left.\phi\right|_{A} \in \operatorname{Aut}(A)$. But $\phi \delta(Z)=2 Y \neq Y=\delta \phi(Z)$. So $\phi \notin \operatorname{Aut}(\delta)$.

Question : Which automorphisms of B are in $\operatorname{Aut}(\delta)$?

- 'Let $A=\operatorname{Ker}(\delta)$. Then $\left.\phi \in \operatorname{Aut}(\delta) \Rightarrow \phi\right|_{A} \in \operatorname{Aut}(A)$. Converse is not true. Take $B=k[X, Y, Z]$ and $\delta=X \frac{\partial}{\partial Y}+2 Y \frac{\partial}{\partial Z}$.
Then $A=k\left[X, X Z-Y^{2}\right]$. Define $\phi \in$ Aut B by $\phi(X)=2 X$, $\phi(Y)=Y$ and $\phi(Z)=Z / 2$. Then $\left.\phi\right|_{A} \in \operatorname{Aut}(A)$. But $\phi \delta(Z)=2 Y \neq Y=\delta \phi(Z)$. So $\phi \notin \operatorname{Aut}(\delta)$.
- Let $\delta_{1} \delta_{2}=\delta_{2} \delta_{1}$

Then $f \in \operatorname{Ker}\left(\delta_{1}\right) \cap \operatorname{Ker}\left(\delta_{2}\right) \quad \Rightarrow \quad \exp \left(f \delta_{1}\right) \in \operatorname{Aut}\left(\delta_{2}\right)$.

Question : Which automorphisms of B are in $\operatorname{Aut}(\delta)$?

- 'Let $A=\operatorname{Ker}(\delta)$. Then $\left.\phi \in \operatorname{Aut}(\delta) \Rightarrow \phi\right|_{A} \in \operatorname{Aut}(A)$. Converse is not true. Take $B=k[X, Y, Z]$ and $\delta=X \frac{\partial}{\partial Y}+2 Y \frac{\partial}{\partial Z}$.
Then $A=k\left[X, X Z-Y^{2}\right]$. Define $\phi \in$ Aut B by $\phi(X)=2 X$, $\phi(Y)=Y$ and $\phi(Z)=Z / 2$. Then $\left.\phi\right|_{A} \in \operatorname{Aut}(A)$. But $\phi \delta(Z)=2 Y \neq Y=\delta \phi(Z)$. So $\phi \notin \operatorname{Aut}(\delta)$.
- Let $\delta_{1} \delta_{2}=\delta_{2} \delta_{1}$

Then $f \in \operatorname{Ker}\left(\delta_{1}\right) \cap \operatorname{Ker}\left(\delta_{2}\right) \quad \Rightarrow \quad \exp \left(f \delta_{1}\right) \in \operatorname{Aut}\left(\delta_{2}\right)$.

- Let $H_{f}:=\{\theta \in \operatorname{Aut}(A) \mid \theta(f)=f\}$. Then

$$
\begin{gathered}
C_{\mathrm{Aut}(\delta)}(\exp (f \delta))=H_{f} \text { and } \\
C_{\mathrm{Aut}(\delta)}(\mathbb{U}(\delta))=\left\{\theta \in \operatorname{Aut}(\delta)|\theta|_{A}=i d_{A}\right\} .
\end{gathered}
$$

Almost rigid domains

Question : What happens when all LNDs are replicas of a canonical one ?

- An affine k-domain B is said to be almost rigid if there exists $D \in \operatorname{LND}(B)$ such that every $\delta \in \operatorname{LND}(B)$ can be written as $\delta=h D$, for some $h \in \operatorname{Ker}(D)$. Moreover, D is called the canonical LND on B.
- For an almost rigid domain B with $B^{*}=k^{*}$, if D is a canonical LND and $\phi \in \operatorname{Aut}(B)$, then $\phi \phi^{-1}=\lambda D$, for some $\lambda \in k^{*}$.

Almost rigid domains

Question : What happens when all LNDs are replicas of a canonical one ?

- An affine k-domain B is said to be almost rigid if there exists $D \in \operatorname{LND}(B)$ such that every $\delta \in \operatorname{LND}(B)$ can be written as $\delta=h D$, for some $h \in \operatorname{Ker}(D)$. Moreover, D is called the canonical LND on B.
- For an almost rigid domain B with $B^{*}=k^{*}$, if D is a canonical LND and $\phi \in \operatorname{Aut}(B)$, then $\phi \phi^{-1}=\lambda D$, for some $\lambda \in k^{*}$.
Example : $B:=\frac{k[X, Y, Z]}{(f(X) Y-P(Z))}$, where $\operatorname{deg}_{X} f>1$. Then
- (Bianchi-Veloso (2017)) [BiV]
B is almost rigid with the canonical LND D given by $D(x)=0, D(y)=\frac{d \phi}{d z}$ and $D(z)=f(x)$.
- (Baltzar-Veloso (2021)) [BaV]

Let $\delta \in \operatorname{LND}(B)$. Then $\operatorname{Aut}(\delta)$ is generated by a finite cyclic group of the form

$$
\left\{(\lambda x, y, z) \mid \lambda \in k^{*} \text { and } \lambda^{s}=1\right\} \text { and } \mathbb{U}(D)
$$

where $f(X)=X^{j} h\left(X^{s}\right)$ such that $h \in k^{[1]}$ has a non-zero root.

Definition.

A k-algebra B is said to be a generalised Danielewski surface over k if B is isomorphic to the k-algebra

$$
B_{d, P}:=\frac{k\left[X, Y_{1}, Y_{2}\right]}{\left(X^{d} Y_{2}-P\left(X, Y_{1}\right)\right)},
$$

where $d \geqslant 2$ and $r:=\operatorname{deg}_{Y_{1}}(P) \geqslant 2$. If $P\left(X, Y_{1}\right)=\prod_{i=1}^{r}\left(Y_{1}-\sigma_{i}(X)\right)$, where $\sigma_{i}(X) \in k[X]$, then the surface $B_{d, P}$ is called a generalised Danielewski surface in standard form.

Definition.

A k-algebra B is said to be a generalised Danielewski surface over k if B is isomorphic to the k-algebra

$$
B_{d, P}:=\frac{k\left[X, Y_{1}, Y_{2}\right]}{\left(X^{d} Y_{2}-P\left(X, Y_{1}\right)\right)}
$$

where $d \geqslant 2$ and $r:=\operatorname{deg}_{Y_{1}}(P) \geqslant 2$. If $P\left(X, Y_{1}\right)=\prod_{i=1}^{r}\left(Y_{1}-\sigma_{i}(X)\right)$, where $\sigma_{i}(X) \in k[X]$, then the surface $B_{d, P}$ is called a generalised Danielewski surface in standard form.
$B_{d, P}$ is an almost rigid domain with the canonical Ind $D_{d, P}$, given by

$$
D_{d, P}:=x^{d} \frac{\partial}{\partial y_{1}}+\frac{\partial P}{\partial y_{1}} \frac{\partial}{\partial y_{2}} .
$$

The automorphism group of $B_{d, P}$ was studied by \mathbf{A}. Dubouloz and P-M. Poloni ([DP], 2009).

$\operatorname{Aut}\left(B_{d, P}\right)$

\mathcal{S}_{r} : the symmetric group of r elements. id : the identity permutation

- Every automorphism Φ in $\operatorname{Aut}\left(B_{d, P}\right)$ is uniquely determined by the datum $\mathcal{A}_{\Phi}=(\alpha, \mu, a, b(x)) \in \mathcal{S}_{r} \times k^{*} \times k^{*} \times k[x]$, such that the polynomial $c(x):=\sigma_{\alpha(i)}(a x)-\mu \sigma_{i}(x)$ does not depend on the index $i=1,2, \ldots, r$.
- Φ is induced by $\psi \in \operatorname{Aut}\left(k\left[X, Y_{1}, Y_{2}\right]\right)$ given by

$$
X \rightarrow a X, \quad Y_{1} \rightarrow \mu Y_{1}+\tilde{c}(X) \text { and }
$$

$Y_{2} \rightarrow \frac{1}{a^{d}} \mu^{r} Y_{2}+\frac{1}{(a X)^{d}}\left(\prod_{i=1}^{r}\left(\mu Y_{1}+\tilde{c}(X)-\sigma_{i}(a X)\right)-\mu^{r} P\left(X, Y_{1}\right)\right)$,
where $\tilde{c}(X)=c(X)+X^{d} b(X)$.

$\operatorname{Aut}\left(B_{d, P}\right)$

\mathcal{S}_{r} : the symmetric group of r elements. id : the identity permutation

- Every automorphism Φ in $\operatorname{Aut}\left(B_{d, P}\right)$ is uniquely determined by the datum $\mathcal{A}_{\Phi}=(\alpha, \mu, a, b(x)) \in \mathcal{S}_{r} \times k^{*} \times k^{*} \times k[x]$, such that the polynomial $c(x):=\sigma_{\alpha(i)}(a x)-\mu \sigma_{i}(x)$ does not depend on the index $i=1,2, \ldots, r$.
- Φ is induced by $\Psi \in \operatorname{Aut}\left(k\left[X, Y_{1}, Y_{2}\right]\right)$ given by

$$
X \rightarrow a X, \quad Y_{1} \rightarrow \mu Y_{1}+\tilde{c}(X) \text { and }
$$

$Y_{2} \rightarrow \frac{1}{a^{d}} \mu^{r} Y_{2}+\frac{1}{(a X)^{d}}\left(\prod_{i=1}^{r}\left(\mu Y_{1}+\tilde{c}(X)-\sigma_{i}(a X)\right)-\mu^{r} P\left(X, Y_{1}\right)\right)$,
where $\tilde{c}(X)=c(X)+X^{d} b(X)$.

- The composition $\Phi_{2} \circ \Phi_{1}$ of two automorphisms Φ_{1} and Φ_{2} of $B_{d, P}$ with data $\mathcal{A}_{\Phi_{1}}=\left(\alpha_{1}, \mu_{1}, a_{1}, b_{1}(x)\right)$ and $\mathcal{A}_{\Phi_{2}}=\left(\alpha_{2}, \mu_{2}, a_{2}, b_{2}(x)\right)$ respectively is the automorphism of $B_{d, p}$ with datum

$$
\mathcal{A}=\left(\alpha_{2} \alpha_{1}, \mu_{2} \mu_{1}, a_{2} a_{1}, \frac{1}{a_{2}^{d}} \mu_{2} b_{1}(x)+b_{2}\left(a_{1} x\right)\right) .
$$

$\operatorname{Aut}\left(B_{d, P}\right)$

- Let $\mathbb{U}, \mathbb{H}, \mathbb{S}$ be the subgroups of $\operatorname{Aut}\left(B_{d, P}\right)$ consisting of the automorphisms corresponding to the data of the type (id, $1,1, b(x)),(i d, 1, a, 0)$ and ($\alpha, \mu, 1,0$) respectively.
- $\operatorname{Aut}\left(B_{d, P}\right) \cong(\mathbb{S} \times \mathbb{H}) \ltimes \mathbb{U}$.

$\operatorname{Aut}\left(D_{d, P}\right)$

Lemma

Let $\delta \in \operatorname{LND}\left(B_{d, P}\right)$ and $\alpha \in \operatorname{Aut}\left(B_{d, P}\right)$. Then the following are equivalent.

- $\alpha \in \operatorname{Aut}(\delta)$.
- $\delta \alpha\left(y_{1}\right)=\alpha \delta\left(y_{1}\right)$.
- $\delta \alpha\left(y_{2}\right)=\alpha \delta\left(y_{2}\right)$.

$\operatorname{Aut}\left(D_{d, P}\right)$

Lemma

Let $\delta \in \operatorname{LND}\left(B_{d, P}\right)$ and $\alpha \in \operatorname{Aut}\left(B_{d, P}\right)$. Then the following are equivalent.

- $\alpha \in \operatorname{Aut}(\delta)$.
- $\delta \alpha\left(y_{1}\right)=\alpha \delta\left(y_{1}\right)$.
- $\delta \alpha\left(y_{2}\right)=\alpha \delta\left(y_{2}\right)$.

For $G \leqslant \operatorname{Aut}\left(B_{d, P}\right)$, define $G_{\delta}:=G \cap \operatorname{Aut}(\delta)$.

Theorem I(-,Lahiri)

Let $\delta=f(x) D_{d, P}$, where $f(x)=\sum_{i=0}^{1} a_{i} x^{n_{i}} \in k[x]\left(n_{i}, I \in \mathbb{N} \cup\{0\}, a_{i} \in k^{*}\right.$ for each i). Suppose $\mathbb{G}:=\operatorname{Aut}(\delta)$ and $n:=\operatorname{GCD}\left(d+n_{0}, \ldots, d+n_{l}\right)$. Then the following statements hold.

- The unipotent group $\mathbb{U} \subseteq \mathbb{G}$ and hence $\mathbb{U}_{\delta}=\mathbb{U}$.
- If $a \in k^{*}$ with $a^{q} \neq 1$ for any $q \in\{1, \ldots, d-1\}$, then (id, $1, a, 0) \in \mathbb{G}$ if and only if $a^{n}=1$ and $n \geqslant d$.

Theorem

- If $a \in k^{*}$ with $a^{q_{0}}=1$ for some minimal $q_{0} \in\{2, \ldots, d-1\}$, then $(i d, 1, a, 0) \in \mathbb{G}$ if and only if $q_{0} \mid n$.
- $\mathbb{H}_{\delta} \cong \mathbb{Z}_{n}$.
- The subgroup $\mathbb{S}_{\delta}=\left\{I d_{B_{d, P}}\right\}$.
- The isotropy subgroup $\mathbb{G} \cong(\mathbb{H} \times \mathbb{S})_{\delta} \ltimes \mathbb{U}$.

Theorem

- If $a \in k^{*}$ with $a^{q_{0}}=1$ for some minimal $q_{0} \in\{2, \ldots, d-1\}$, then (id, $1, a, 0) \in \mathbb{G}$ if and only if $q_{0} \mid n$.
- $\mathbb{H}_{\delta} \cong \mathbb{Z}_{n}$.
- The subgroup $\mathbb{S}_{\delta}=\left\{l d_{B_{d, P}}\right\}$.
- The isotropy subgroup $\mathbb{G} \cong(\mathbb{H} \times \mathbb{S})_{\delta} \ltimes \mathbb{U}$.

Remark

- If $\delta=D_{d, P}$, then $\mathbb{U}(\delta) \varsubsetneqq \operatorname{Aut}(\delta)$. Indeed, if $\omega \in k$ be a primitive d-th root of unity, then $(i d, 1, \omega, 0)\left(\neq I d_{B_{d, P}}\right) \in \operatorname{Aut}(\delta)$.
- However, it may happen that $\operatorname{Aut}(\delta)=\mathbb{U}$, when δ is a replica of $D_{d, P}$. For example, if $\delta=\left(x+x^{2}\right) D_{d, P}$, then $(\mathbb{H} \times \mathbb{S})_{\delta}=\left\{I d_{B_{d, P}}\right\}$.

Definition

An affine algebraic variety $\mathbb{V}_{\text {con }} \subseteq \mathbb{K}^{m+1}$ is called a Danielewski variety with constant coefficients if

$$
\mathbb{K}\left[\mathbb{V}_{\text {con }}\right]=\frac{\mathbb{K}\left[Y_{1}, Y_{2}, \ldots, Y_{m}, Z\right]}{\left(Y_{1} Y_{2}^{k_{2}} \ldots Y_{m}^{k_{m}}-P(Z)\right)},
$$

where $m, k_{1}, \ldots, k_{m}, \operatorname{deg}_{z}(P) \geqslant 2, P$ monic.
These varieties were introduced by Dubouloz (2007) [D07] as counterexamples to the Generalized Zariski Cancellation Problem.

Danielewski varieties with constant coefficients

Definition

An affine algebraic variety $\mathbb{V}_{\text {con }} \subseteq \mathbb{K}^{m+1}$ is called a Danielewski variety with constant coefficients if

$$
\mathbb{K}\left[\mathbb{V}_{\text {con }}\right]=\frac{\mathbb{K}\left[Y_{1}, Y_{2}, \ldots, Y_{m}, Z\right]}{\left(Y_{1} Y_{2}^{k_{2}} \ldots Y_{m}^{k_{m}}-P(Z)\right)},
$$

where $m, k_{1}, \ldots, k_{m}, \operatorname{deg}_{z}(P) \geqslant 2, P$ monic.
These varieties were introduced by Dubouloz (2007) [D07] as counterexamples to the Generalized Zariski Cancellation Problem.

Theorem (Dubouloz)

If $\mathbb{K}\left[\mathbb{V}_{\text {con }}\right]=\frac{\mathbb{K}\left[Y_{1}, Y_{2}, \ldots, Y_{m}, Z\right]}{\left(Y_{1} Y_{2}^{k_{2}} \ldots Y_{m}^{k_{m}}-P(Z)\right)}$ and
$\mathbb{K}\left[\mathbb{V}_{\text {con }}^{\prime}\right]=\frac{\mathbb{K}\left[Y_{1}, Y_{2}, \ldots, Y_{m}, Z\right]}{\left(Y_{1} Y_{2}^{k_{2}^{\prime}} \ldots Y_{m}^{k_{m}^{\prime}}-P(Z)\right)}$, such that
$\left(k_{2}, \ldots, k_{m}\right) \neq\left(k_{2}^{\prime}, \ldots, k_{m}^{\prime}\right)$, then $\mathbb{V}_{\text {con }} \times \mathbb{K} \cong \mathbb{V}_{\text {con }}^{\prime} \times \mathbb{K}$ but $\mathbb{V}_{\text {con }} \nsubseteq \mathbb{V}_{\text {con }}^{\prime}$.

Group actions on $\mathbb{V}_{\text {con }}$

Later Gaifullin (2021)[G21] studied $\operatorname{Aut}\left(\mathbb{V}_{\text {con }}\right)$ in detail.

- The stabilizer of the monomial $Y_{1} Y_{2}^{k_{2}} \ldots Y_{m}^{k_{m}}$ under the natural diagonal action of the m-dimensional algebraic torus $\left(\mathbb{K}^{*}\right)^{m}$ on $\mathbb{K}\left[Y_{1}, Y_{2}, \ldots, Y_{m}\right]$ is isomorphic to the ($m-1$)-dimensional torus, denoted by \mathbb{T}. If we consider the trivial action of \mathbb{T} on $\mathbb{K}[Z]$, then there is an effective action of \mathbb{T} on $\mathbb{V}_{\text {con }}$. \mathbb{T} is called the proper torus of $\mathbb{V}_{\text {con }}$.
- There is a natural action of the symmetric group \mathcal{S}_{m} on $\mathbb{K}\left[Y_{1}, \ldots, Y_{m}\right]$. The stabilizer \mathbb{S} of the monomial $Y_{1} Y_{2}^{k_{2}} \ldots Y_{m}^{k_{m}}$ is isomorphic to the group $\mathcal{S}_{m_{1}} \times \cdots \times \mathcal{S}_{m_{n}}$, where $m=m_{1}+\cdots+m_{n}$ and for each $i \in\{1, \ldots, n\}, \mathcal{S}_{m_{i}}$ permutes the m_{i} many Y_{j} 's with same k_{j}. If we consider the trivial action of \mathbb{S} on $\mathbb{K}[Z]$, then there is an effective action of \mathbb{S} on $\mathbb{V}_{\text {con }}$. This group \mathbb{S} is called the symmetric group of $\mathbb{V}_{\text {con }}$.

Different types of actions on $\mathbb{V}_{\text {con }}$

- If $P(Z)=Z^{d}$, there is also an effective action of an one-dimensional torus \mathbb{K}^{*} acting by

$$
t \cdot\left(y_{1}, y_{2}, \ldots, y_{m}, z\right)=\left(t^{d} y_{1}, y_{2} \ldots, y_{m}, t z\right), \quad \text { for all } t \in \mathbb{K}^{*}
$$

If $P(Z) \neq Z^{d}$ and v is the maximal integer such that there exists a polynomial $Q(Z) \in \mathbb{K}[Z]$ and a non-negative integer u such that $P(Z)=Z^{u} Q\left(Z^{v}\right)$, then there is an action of \mathbb{Z}_{v} (considered as a subgroup of k^{*}) on $\mathbb{V}_{\text {con }}$, given by

$$
t \cdot\left(y_{1}, y_{2}, \ldots, y_{m}, z\right)=\left(t^{u} y_{1}, y_{2} \ldots, y_{m}, t z\right), \quad \text { where } t^{v}=1
$$

In each of these cases, the groups \mathbb{K}^{*} and \mathbb{Z}_{V} are called the additional quasitorus of $\mathbb{V}_{\text {con }}$ and denoted by \mathbb{D}.

Different types of actions on $\mathbb{V}_{\text {con }}$

- If $P(Z)=Z^{d}$, there is also an effective action of an one-dimensional torus \mathbb{K}^{*} acting by

$$
t \cdot\left(y_{1}, y_{2}, \ldots, y_{m}, z\right)=\left(t^{d} y_{1}, y_{2} \ldots, y_{m}, t z\right), \quad \text { for all } t \in \mathbb{K}^{*}
$$

If $P(Z) \neq Z^{d}$ and v is the maximal integer such that there exists a polynomial $Q(Z) \in \mathbb{K}[Z]$ and a non-negative integer u such that $P(Z)=Z^{u} Q\left(Z^{v}\right)$, then there is an action of \mathbb{Z}_{v} (considered as a subgroup of k^{*}) on $\mathbb{V}_{\text {con }}$, given by

$$
t \cdot\left(y_{1}, y_{2}, \ldots, y_{m}, z\right)=\left(t^{u} y_{1}, y_{2} \ldots, y_{m}, t z\right), \quad \text { where } t^{v}=1
$$

In each of these cases, the groups \mathbb{K}^{*} and \mathbb{Z}_{V} are called the additional quasitorus of $\mathbb{V}_{\text {con }}$ and denoted by \mathbb{D}.

- $\mathbb{K}\left[\mathbb{V}_{\text {con }}\right]$ is an almost rigid domain with the canonical LND

$$
D_{\mathrm{con}}:=P^{\prime}(z) \frac{\partial}{\partial y_{1}}+y_{2}^{k_{2}} \ldots y_{m}^{k_{m}} \frac{\partial}{\partial z}
$$

- $\operatorname{Aut}\left(\mathbb{V}_{\text {con }}\right) \cong \mathbb{S} \ltimes((\mathbb{T} \times \mathbb{D}) \ltimes \mathbb{U}(D$ con $))$.

Lemma

Let $\delta=h D_{\text {con }}$, where $h \in \mathbb{K}\left[y_{2}, \ldots, y_{m}\right]$ and $\theta \in \mathbb{T}$. Then the following statements are equivalent.

- $\delta \theta\left(y_{1}\right)=\theta \delta\left(y_{1}\right)$.
- $h \theta\left(y_{1}\right)=y_{1} \theta(h)$.
- $\delta \theta(z)=\theta \delta(z)$.
- $\theta \in \operatorname{Aut}(\delta)$.

Corollary

Let $\delta=h D$ con, for some $h \in \mathbb{K}^{*}$. Then $\mathbb{T}_{\delta} \cong\left(\mathbb{K}^{*}\right)^{m-2} \times \mathbb{Z}_{s}$, where $s=\operatorname{GCD}\left(k_{2}, \ldots, k_{m}\right)$.

Lemma

Let $\delta=h D$ con, for some $h \in \mathbb{K}\left[y_{2}, \ldots, y_{m}\right]$ and $\sigma \in \mathbb{S}$. Then the following statements are equivalent.

- $\delta \sigma\left(y_{1}\right)=\sigma \delta\left(y_{1}\right)$.
- $\sigma(h)=h$.
- $\delta \sigma(z)=\sigma \delta(z)$.
- $\sigma \in \operatorname{Aut}(\delta)$.

In particular, if $h \in \mathbb{K}^{*}$, then $\mathbb{S}\left(=\mathbb{S}_{\delta}\right)$ is a subgroup of $\operatorname{Aut}(\delta)$.

Lemma

Let $\delta=h D_{\text {con }}$, for some $h \in \mathbb{K}\left[y_{2}, \ldots, y_{m}\right]$. Let $\varphi \in \mathbb{D}$. Then

$$
\varphi \in \operatorname{Aut}(\delta) \Leftrightarrow \varphi=I d
$$

$\operatorname{Aut}\left(\mathbb{V}_{\text {con }}\right)$ and $\operatorname{Aut}\left(D_{\text {con }}\right)$

Theorem (Gaifullin)

$$
\operatorname{Aut}\left(\mathbb{V}_{\text {con }}\right) \cong \mathbb{S} \ltimes\left((\mathbb{T} \times \mathbb{D}) \ltimes \mathbb{U}\left(D_{\text {con }}\right)\right)
$$

Theorem II(-,Lahiri)

The isotropy subgroup Aut(Dcon) can be described as follows.

- If $P(Z)=Z^{d}$, then

$$
\operatorname{Aut}\left(D_{\text {con }}\right) \cong \mathbb{S} \ltimes\left(\left(\mathbb{K}^{*}\right)^{m-1} \ltimes \mathbb{U}\left(D_{\text {con }}\right)\right) .
$$

- If $P(Z) \neq Z^{d}$ and v is the maximal integer such that $P(Z)=Z^{u} Q\left(Z^{v}\right)$, then

$$
\operatorname{Aut}(D \operatorname{con}) \cong \mathbb{S} \ltimes\left(\left(\left(\mathbb{K}^{*}\right)^{m-2} \times \mathbb{Z}_{\text {sv }}\right) \ltimes \mathbb{U}(D \operatorname{con})\right),
$$

where $s=\operatorname{GCD}\left(k_{2}, \ldots, k_{m}\right)$.

- If $P(Z)=Z^{d}$, then there exist $\sigma_{1} \in \mathbb{T}$ and $\sigma_{2} \in \mathbb{D}$ such that $\sigma_{1} \sigma_{2} \in(\mathbb{T} \times \mathbb{D})_{D \text { con }}$ but neither $\sigma_{1} \in \mathbb{T}_{D \text { con }}$ nor $\sigma_{2} \in \mathbb{D}_{D \text { con }}(=\{l d\})$. For example, let $\sigma_{1}\left(y_{1}, \ldots, y_{m}, z\right)=\left(\frac{1}{\lambda^{k_{2}}} y_{1}, \lambda y_{2}, y_{3}, \ldots, y_{m}, z\right)$ and $\sigma_{2}\left(y_{1}, y_{2}, \ldots, y_{m}, z\right)=\left(\lambda^{k_{2} d} y_{1}, y_{2}, \ldots, y_{m}, \lambda^{k_{2}} z\right)$, where $\lambda \in \mathbb{K}^{*}$ be such that $\lambda^{k_{2}} \neq 1$.
- If $P(Z) \neq Z^{d}$ and $v \geqslant 2$ be the maximal integer such that $P(Z)=Z^{u} Q\left(Z^{v}\right)$ then there exist $\sigma_{1} \in \mathbb{T}$ and $\sigma_{2} \in \mathbb{D}$ such that $\sigma_{1} \sigma_{2} \in(\mathbb{T} \times \mathbb{D})_{D \text { con }}$ but neither $\sigma_{1} \in \mathbb{T}_{\text {Dcon }}$ nor $\sigma_{2} \in \mathbb{D}_{D \text { con }}(=\{l d\})$. For example, let
$\sigma_{1}\left(y_{1}, \ldots, y_{m}, z\right)=\left(\frac{1}{\lambda^{k_{2}}} y_{1}, \lambda y_{2}, y_{3}, \ldots, y_{m}, z\right)$ and
$\sigma_{2}\left(y_{1}, y_{2}, \ldots, y_{m}, z\right)=\left(\lambda^{k_{2} u} y_{1}, y_{2}, \ldots, y_{m}, \lambda^{k_{2}} z\right)$, where $\lambda \in \mathbb{K}^{*}$ be such that $\lambda^{k_{2} v}=1$ but $\lambda^{k_{2}} \neq 1$.

A threefold by Finston and Maubach

Definition

Consider the Pham-Brieskorn surface

$$
R=\frac{\mathbb{C}[X, Y, Z]}{\left(X^{a}+Y^{b}+Z^{c}\right)}, \quad \text { where } \frac{1}{a}+\frac{1}{b}+\frac{1}{c}<1
$$

For $m, n \geqslant 2$, we define the following threefold

$$
B_{m, n}=\frac{R[U, V]}{\left(X^{m} U-Y^{n} V-1\right)}
$$

They were introduced by Finston and Maubach in 2008 as another set of examples to the Zariski Cancellation Problem.

A threefold by Finston and Maubach

Definition

Consider the Pham-Brieskorn surface

$$
R=\frac{\mathbb{C}[X, Y, Z]}{\left(X^{a}+Y^{b}+Z^{c}\right)}, \quad \text { where } \frac{1}{a}+\frac{1}{b}+\frac{1}{c}<1 .
$$

For $m, n \geqslant 2$, we define the following threefold

$$
B_{m, n}=\frac{R[U, V]}{\left(X^{m} U-Y^{n} V-1\right)} .
$$

They were introduced by Finston and Maubach in 2008 as another set of examples to the Zariski Cancellation Problem. They showed

- $B_{m, n}$ is a UFD, but not regular.
- If $(m, n) \neq\left(m^{\prime}, n^{\prime}\right)$, then $B_{m, n} \nsubseteq B_{m^{\prime}, n^{\prime}}$ but $B_{m, n}{ }^{[1]} \cong B_{m^{\prime}, n^{\prime}}{ }^{[1]}$.
- $B_{m, n}$ is almost rigid with canonical LND

$$
D_{m, n}=y^{n} \frac{\partial}{\partial u}+x^{m} \frac{\partial}{\partial v} .
$$

Theorem (Finston, Maubach)

Aut $\left(B_{m, n}\right)$ is generated by the following elements.

- $\theta_{f}^{+}(x, y, z, u, v) \rightarrow\left(x, y, z, u+f(x, y, z) y^{n}, v+f(x, y, z) x^{m}\right)$, for $f \in R$.
- $\theta_{\mu}^{*}(x, y, z, u, v) \rightarrow\left(\mu^{b c} x, \mu^{a c} y, \mu^{a b} z, \frac{1}{\mu^{m b c}} u, \frac{1}{\mu^{n a c}} v\right)$, for $\mu \in \mathbb{C}^{*}$.

$\operatorname{Aut}\left(B_{m, n}\right)$

Theorem (Finston, Maubach)

Aut $\left(B_{m, n}\right)$ is generated by the following elements.

- $\theta_{f}^{+}(x, y, z, u, v) \rightarrow\left(x, y, z, u+f(x, y, z) y^{n}, v+f(x, y, z) x^{m}\right)$, for $f \in R$.
- $\theta_{\mu}^{*}(x, y, z, u, v) \rightarrow\left(\mu^{b c} x, \mu^{a c} y, \mu^{a b} z, \frac{1}{\mu^{m b c}} u, \frac{1}{\mu^{n a c}} v\right)$, for $\mu \in \mathbb{C}^{*}$.

So $\operatorname{Aut}\left(B_{m, n}\right) \cong \mathbb{C}^{*} 人 \mathbb{U}\left(D_{m, n}\right)$.
Let $\mathbb{T}:=$ set of automorphisms induced by the action of \mathbb{C}^{*}.

Lemma

Let $\delta \in h D_{m, n}$, where $h \in R \backslash\{0\}$ and $\theta:=\theta_{\mu}^{*} \in \mathbb{T}$. Then TFAE

- $\theta \in \operatorname{Aut}(\delta)$,
- $\delta \theta(\mu)=\theta \delta(\mu)$,
- $\delta \theta(v)=\theta \delta(v)$,
- $\mu^{\text {nac }+m b c} \theta(h)=h$.

$\operatorname{Aut}(\delta)$

Theorem (-,Lahiri)

Let $\delta \in h D_{m, n}$, where $h \in R \backslash\{0\}$. Then

- \mathbb{T}_{δ} is a finite cyclic group.
- $\operatorname{Aut}(\delta) \cong \mathbb{T}_{\delta} \curlywedge \mathbb{U}\left(D_{m, n}\right)$.

$\operatorname{Aut}(\delta)$

Theorem (-,Lahiri)

Let $\delta \in h D_{m, n}$, where $h \in R \backslash\{0\}$. Then

- \mathbb{T}_{δ} is a finite cyclic group.
- $\operatorname{Aut}(\delta) \cong \mathbb{T}_{\delta}<\mathbb{U}\left(D_{m, n}\right)$.

Remarks

- If $h=\sum_{r, s, t \geqslant 0, r<a} a_{r, s, t} x^{r} y^{s} z^{t}$, then

$$
\theta_{\mu} \in \operatorname{Aut}(\delta) \Leftrightarrow \mu^{b c(m+r)+a c(n+s)+a b t}=1 .
$$

- If $\delta=D_{m, n}$, then $\mathbb{U}(\delta) \varsubsetneqq \operatorname{Aut}(\delta)$ as $m b c+n a c>2$.
- Let $a>2$ and $\delta=\left(x+x^{2}\right) D_{m, n}$. Then $\mathbb{T}_{\delta}=\left\{i d_{B_{m, n}}\right\}$ and hence $\mathbb{U}(\delta)=\operatorname{Aut}(\delta)$.

|sotropy subgroups in $k^{[2]}$

Theorem (Rentschler (1968))[R]

Let $D(\neq 0) \in \operatorname{LND}(k[X, Y])$. There there exists an automorphism $\alpha \in \operatorname{Aut}(k[X, Y])$ and $f(X) \in k[X]$ such that $\alpha D \alpha^{-1}=f(X) \frac{\partial}{\partial Y}$.

Isotropy subgroups in $k^{[2]}$

Theorem (Rentschler (1968))[R]

Let $D(\neq 0) \in \operatorname{LND}(k[X, Y])$. There there exists an automorphism $\alpha \in \operatorname{Aut}(k[X, Y])$ and $f(X) \in k[X]$ such that $\alpha D \alpha^{-1}=f(X) \frac{\partial}{\partial Y}$.

Theorem (Baltzar, Veloso (2021))[BaV]

Let $D=f(X) \frac{\partial}{\partial Y}$, where $f(X) \in k[X]$. Then all elements of $\operatorname{Aut}(D)$ are of the form

$$
\binom{X}{Y} \rightarrow\binom{a X+b}{c Y+p(X)}
$$

where $a, b, c \in k, b c \neq 0, p(X) \in k[X], f(a X+b)=c f(X)$.

Isotropy subgroups in $k^{[2]}$

Theorem (Rentschler (1968))[R]

Let $D(\neq 0) \in \operatorname{LND}(k[X, Y])$. There there exists an automorphism $\alpha \in \operatorname{Aut}(k[X, Y])$ and $f(X) \in k[X]$ such that $\alpha D \alpha^{-1}=f(X) \frac{\partial}{\partial Y}$.

Theorem (Baltzar, Veloso (2021))[BaV]

Let $D=f(X) \frac{\partial}{\partial Y}$, where $f(X) \in k[X]$. Then all elements of $\operatorname{Aut}(D)$ are of the form

$$
\binom{X}{Y} \rightarrow\binom{a X+b}{c Y+p(X)}
$$

where $a, b, c \in k, b c \neq 0, p(X) \in k[X], f(a X+b)=c f(X)$.

Remarks

- If $n:=\operatorname{deg}_{x} f$, then $c=a^{n}$.
- $\operatorname{Aut}(D)=\mathbb{U}\left(\frac{\partial}{\partial Y}\right)$ if and only if

$$
\left\{\left.\phi\right|_{k[X]} \mid \phi \in \operatorname{Aut}(D) \text { and } \phi(f)=\lambda f, \lambda \in k^{*}\right\}=\{i d\} .
$$

Let $B \in \operatorname{LND}\left(k^{[3]}\right)$ and $D_{1}, D_{2} \in \operatorname{LND}(B)$.

Proposition
 $\mathbb{U}\left(D_{2}\right) \subseteq \operatorname{Aut}\left(D_{1}\right) \Leftrightarrow \operatorname{Ker}\left(D_{1}\right)=\operatorname{Ker}\left(D_{2}\right)$.

An elementary result

Let $B \in \operatorname{LND}\left(k^{[3]}\right)$ and $D_{1}, D_{2} \in \operatorname{LND}(B)$.

Proposition

$\mathbb{U}\left(D_{2}\right) \subseteq \operatorname{Aut}\left(D_{1}\right) \Leftrightarrow \operatorname{Ker}\left(D_{1}\right)=\operatorname{Ker}\left(D_{2}\right)$.

Remarks

- $\operatorname{Aut}\left(D_{1}\right)=\operatorname{Aut}\left(D_{2}\right) \Rightarrow \operatorname{Ker}\left(D_{1}\right)=\operatorname{Ker}\left(D_{2}\right)$.
- Converse need not be true. Let $B=k[X, Y, Z], D_{1}=Y \frac{\partial}{\partial Z}$ and $D_{2}=X \frac{\partial}{\partial Z}$. Then $\operatorname{Ker}\left(D_{1}\right)=\operatorname{Ker}\left(D_{2}\right)=k[X, Y]$. Consider the automorphsim ϕ of B given by

$$
\phi(X, Y, Z)=(X+Y, Y, Z+X)
$$

Then $\phi \in \operatorname{Aut}\left(D_{1}\right) \backslash \operatorname{Aut}\left(D_{2}\right)$.

Triangularizable LNDs

Definition

An LND D on $B=k^{[3]}$ is said to be triangularizable if there exists a coordinate system (X, Y, Z) of B with respect to which D is triangular, i.e.,

$$
D(X)=0, \quad D(Y) \in k[X] \text { and } D(Z) \in k[X, Y] .
$$

Triangularizable LNDs

Definition

An LND D on $B=k^{[3]}$ is said to be triangularizable if there exists a coordinate system (X, Y, Z) of B with respect to which D is triangular, i.e.,

$$
D(X)=0, \quad D(Y) \in k[X] \text { and } D(Z) \in k[X, Y] .
$$

Theorem III(-, Gaifullin)

Let $B=k^{[3]}$ and $D(\neq 0) \in \operatorname{LND}(B)$. TFAE

- There exists a locally nilpotent derivation δ of rank 1 such that $\operatorname{Exp}(\delta) \in \operatorname{Aut}(D)$.
- D is triangularizable.

Triangularizable LNDs

Definition

An LND D on $B=k^{[3]}$ is said to be triangularizable if there exists a coordinate system (X, Y, Z) of B with respect to which D is triangular, i.e.,

$$
D(X)=0, \quad D(Y) \in k[X] \text { and } D(Z) \in k[X, Y] .
$$

Theorem III(-, Gaifullin)

Let $B=k^{[3]}$ and $D(\neq 0) \in \operatorname{LND}(B)$. TFAE

- There exists a locally nilpotent derivation δ of rank 1 such that $\operatorname{Exp}(\delta) \in \operatorname{Aut}(D)$.
- D is triangularizable.

Remark

Suppose $B=k[X, Y, Z]$ and $\delta=f(X, Y) \frac{\partial}{\partial Z}$, then one can get the desired coordinate system by applying a "tame" automorphism.

An Example in $k^{[4]}$

Let $B=k[X, Y, Z]$ and

$$
\Delta=X \frac{\partial}{\partial Y}+2 Y \frac{\partial}{\partial Z}
$$

Then

$$
\operatorname{Ker}(\Delta)=k[X, F] \text { where } F=X Z-Y^{2} .
$$

For each $t \in k^{*}$, let $D_{t}:=t F \Delta$. Extend D_{t} to $\tilde{D}_{t} \in \operatorname{LND}(B[W])$ by setting $\tilde{D}_{t}(W)=0$. Then

- D_{t} is not triangularizable (Bass (1984)[B84]).
- \tilde{D}_{t} is not triangularizable. (Freudenburg $[\mathrm{F}]$).
- But $\frac{\partial}{\partial W} \in \operatorname{Aut}\left(\tilde{D}_{t}\right)$.

So Theorem III does not extend to higher dimensions.

Definition

Let B be an affine k-domain and $f \in B$. Define

$$
\operatorname{Aut}(B)^{(f)}:=\left\{\theta \in \operatorname{Aut}(B) \mid \theta(f)=\lambda f, \text { for some } \lambda \in k^{*}\right\}
$$

Rank one LNDs

Definition

Let B be an affine k-domain and $f \in B$. Define

$$
\operatorname{Aut}(B)^{(f)}:=\left\{\theta \in \operatorname{Aut}(B) \mid \theta(f)=\lambda f, \text { for some } \lambda \in k^{*}\right\}
$$

Theorem IV(-, Gaifullin)

Let B be an affine domain and $B^{*}=k^{*}$. Let $D, \delta \in \operatorname{LND}(B)$ such that δ has a slice and $D=h \delta$ for some $h \in \operatorname{Ker}(\delta):=A$. Then

$$
\operatorname{Aut}(D) \cong \operatorname{Aut}(A)^{(h)}<\mathbb{U}(\delta)
$$

Rank one LNDs

Definition

Let B be an affine k-domain and $f \in B$. Define

$$
\operatorname{Aut}(B)^{(f)}:=\left\{\theta \in \operatorname{Aut}(B) \mid \theta(f)=\lambda f, \text { for some } \lambda \in k^{*}\right\}
$$

Theorem IV(-, Gaifullin)

Let B be an affine domain and $B^{*}=k^{*}$. Let $D, \delta \in \operatorname{LND}(B)$ such that δ has a slice and $D=h \delta$ for some $h \in \operatorname{Ker}(\delta):=A$. Then

$$
\operatorname{Aut}(D) \cong \operatorname{Aut}(A)^{(h)}<\mathbb{U}(\delta)
$$

Corollary I(-, Gaifullin)

Let $B=k^{[3]}$ and $D \in \operatorname{LND}(B)$. Then
$\operatorname{Aut}(D) \cong \operatorname{Aut}\left(k^{[2]}\right) \curlywedge \mathbb{U}(D)$ in the following cases:

- D is fixed point free.
- $D^{2}(X)=D^{2}(Y)=D^{2}(Z)=0$.

A useful Lemma

Lemma

Let $B=k^{[3]}, D(\neq 0) \in \operatorname{LND}(B)$ and $A=\operatorname{Ker}(D)$. Let g be a local slice of D with $D(g)=f \in A$. If $\delta:=\left.D\right|_{A[g]}$, then

- $\delta=f \frac{\partial}{\partial g} \in \operatorname{LND}(A[g])$.
- there exists a injective group homomorphism
$\Phi: \operatorname{Aut}(D) \rightarrow \operatorname{Aut}(\delta)$.
- $\operatorname{Aut}(\delta) \cong \operatorname{Aut}(A)^{(f)}<\mathbb{U}\left(\frac{\partial}{\partial g}\right)$.
- $\Phi(\mathbb{U}(D))=\{\operatorname{Exp}(h \delta) \mid h \in A\}$.

A useful Lemma

Lemma

Let $B=k^{[3]}, D(\neq 0) \in \operatorname{LND}(B)$ and $A=\operatorname{Ker}(D)$. Let g be a local slice of D with $D(g)=f \in A$. If $\delta:=\left.D\right|_{A[g]}$, then

- $\delta=f \frac{\partial}{\partial g} \in \operatorname{LND}(A[g])$.
- there exists a injective group homomorphism
$\Phi: \operatorname{Aut}(D) \rightarrow \operatorname{Aut}(\delta)$.
- $\operatorname{Aut}(\delta) \cong \operatorname{Aut}(A)^{(f)}<\mathbb{U}\left(\frac{\partial}{\partial g}\right)$.
- $\Phi(\mathbb{U}(D))=\{\operatorname{Exp}(h \delta) \mid h \in A\}$.

Remark

Any $\phi \in \operatorname{Aut}(A)^{(f)}$ with $\phi(f)=\lambda f\left(\lambda \in k^{*}\right)$ can be uniquely extended to an element of $\operatorname{Aut}(A[g])$ by setting $\phi(g)=\lambda g$.

Rank 2 LNDs

Definition

An LND D on the affine domain B is said to be reducible if there exists $b \in B$ such that $D(B) \subseteq(b) B$. Otherwise, D is irreducible.

Rank 2 LNDs

Definition

An LND D on the affine domain B is said to be reducible if there exists $b \in B$ such that $D(B) \subseteq(b) B$. Otherwise, D is irreducible.

If B is a UFD and $D \in \operatorname{LND}(B)$ then D can be written as a replica of an irreducible LND, which is unique upto multiplication by a unit.

Rank 2 LNDs

Definition

An LND D on the affine domain B is said to be reducible if there exists $b \in B$ such that $D(B) \subseteq(b) B$. Otherwise, D is irreducible.

If B is a UFD and $D \in \operatorname{LND}(B)$ then D can be written as a replica of an irreducible LND, which is unique upto multiplication by a unit.

Lemma

Let $B=k^{[3]}$ and $D \in \operatorname{LND}(B)$ be irreducible of rank at most 2. Then there exists a variable X of B and $g \in B$ such that $D(g)=f(X)$.

Rank 2 LNDs

Definition

An LND D on the affine domain B is said to be reducible if there exists $b \in B$ such that $D(B) \subseteq(b) B$. Otherwise, D is irreducible.

If B is a UFD and $D \in \operatorname{LND}(B)$ then D can be written as a replica of an irreducible LND, which is unique upto multiplication by a unit.

Lemma

Let $B=k^{[3]}$ and $D \in \operatorname{LND}(B)$ be irreducible of rank at most 2. Then there exists a variable X of B and $g \in B$ such that $D(g)=f(X)$.

Lemma

Let $B=k[X, Y, Z], D(\neq 0) \in \operatorname{LND}(B)$ be irreducible of rank 2 and $A=\operatorname{Ker} D$. Assume that $D(X)=0$.
(i) There exist $v, g \in B$ such that $A=k[X, v]$ and $D(g)=f(X)$,
(ii) $\operatorname{Aut}(\delta) \cong \operatorname{Aut}(A)^{(f)}<U\left(\frac{\partial}{\partial g}\right)$, where $\delta=\left.D\right|_{A[g]}$ and

Lemma

(iii) if $n:=\operatorname{deg}_{X} f$, then $\operatorname{Aut}(A)^{(f)}=$

$$
\left\{\begin{array}{l|l}
\phi \in \operatorname{Aut}(A) & \begin{array}{l}
\phi(X)=a X+b \text { where } a \in k^{*}, b \in k, \phi(f)=a^{n} f, \\
\phi(v)=\mu v+\beta(X), \mu \in k^{*} \text { and } \beta(X) \in k[X] .
\end{array}
\end{array}\right\}
$$

Rank 2 LNDs

Lemma

(iii) if $n:=\operatorname{deg}_{X} f$, then $\operatorname{Aut}(A)^{(f)}=$

$$
\left\{\begin{array}{l|l}
\phi \in \operatorname{Aut}(A) & \begin{array}{l}
\phi(X)=a X+b \text { where } a \in k^{*}, b \in k, \phi(f)=a^{n} f, \\
\phi(v)=\mu v+\beta(X), \mu \in k^{*} \text { and } \beta(X) \in k[X] .
\end{array}
\end{array}\right\}
$$

Let us look at the following example due to Bass.
$D(X)=0, \quad D(Y)=X$ and $D Z=-2 Y$.

- D is triangular of rank 2 .
- Ker $D=A=k[X, v]$, where $v=X Z+Y^{2}$ and $\left.D\right|_{A}:=\delta=X \frac{\partial}{\partial Y}$.
- $A \cap D(B)=(X)$.

- $\operatorname{Aut}(\delta) \cong G 人 \mathbb{U}(D)$.

References

[BaV] R. Baltazar and M. O. Veloso, On isotropy group of Danielewski surfaces, Comm. Alg. 49(3) (2021) 1006-1016.
[B84] H. Bass, A non-triangular action of \mathbb{G}_{a} on \mathbb{A}^{3}, J. Pure Appl. Algebra 33 (1984) 1-5.
[BiV] A. C. Bianchi and M. O. Veloso, Locally nilpotent derivations and automorphism groups of certain Danielweski surfaces, J. Algebra 469 (2017) 96-108.
[DL] N. Dasgupta, A. Lahiri, Isotropy subgroup of some almost rigid domains, Journal of Pure and Applied Algebra, 227(4) (2023).
[D07] A. Dubouloz, Additive group actions on Danielweski varieties and the cancellation problem, Math. Z. 255(1) (2007) 77-93.
[DP] A. Dubouloz and P-M. Poloni, On a class of Danielewski surfaces in affine 3-space, J. Algebra 321 (2009) 1797-1812.
[F] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Second Edition, Springer-Verlag, Berlin, Heidelberg (2017).
[G21] S. Gaifullin, Automorphisms of Danielewski varieties, J. Algebra 573 (2021) 364-392.

Thank you!

