On isotropy subgroups

Nikhilesh Dasgupta NMIMS

Workshop : Affine Spaces, Algebraic Group Actions and LNDs

Introduction

First, we will fix some notations.

- k : an alg. closed field of char. 0
- \bullet B: an affine k-domain
- Aut(B): set of k-algebra automorphisms on B.
- LND(B): set of locally nilpotent derivations on B.
- $Ker(\delta)$: kernel of LND δ .

Introduction

First, we will fix some notations.

- k : an alg. closed field of char. 0
- B : an affine k-domain
- Aut(B): set of k-algebra automorphisms on B.
- LND(B): set of locally nilpotent derivations on B.
- $Ker(\delta)$: kernel of LND δ .

There is a natural action of $\operatorname{Aut}(B)$ on $\operatorname{LND}(B)$ defined by $\alpha \cdot \delta = \alpha \delta \alpha^{-1}$, for $\alpha \in \operatorname{Aut}(B)$ and $\delta \in \operatorname{LND}(B)$.

Given $\delta \in \mathrm{LND}(B)$, the **stabilizer** of δ under the above action, i.e., the subgroup $\{\sigma \in \mathrm{Aut}(B) : \sigma\delta = \delta\sigma\}$ of $\mathrm{Aut}(B)$, is called the isotropy subgroup of B with respect to δ and will be denoted by

 $\operatorname{Aut}(B)_{\delta}$ or $\operatorname{Aut}(\delta)$.

The big unipotent subgroup $\mathbb{U}(\delta)$

- Every $\delta \in \mathrm{LND}(B)$ induces an element of $\mathrm{Aut}(B)$ via the exponential map, defined as $\exp(\delta) := \sum_{i \geqslant 0} \frac{1}{i!} \delta^i$.
- For any LND δ , each of its replicas $f\delta$ $(f \in \text{Ker}(\delta))$ is also an LND.
- Exponents of all replicas of δ form a commutative subgroup $\mathbb{U}(\delta) := \{\exp(f\delta) \mid f \in \operatorname{Ker}(\delta)\}$, called the big unipotent subgroup corresponding to δ .
- The correspondence $f \leftrightarrow \exp(f\delta)$ induces an isomorphism between $\mathbb{U}(\delta)$ and $(\operatorname{Ker}(\delta), +)$. It is easy to see that for any $\delta \in \operatorname{LND}(B)$, the big unipotent group $\mathbb{U}(\delta)$ is a subgroup of $\operatorname{Aut}(\delta)$.

The big unipotent subgroup $\mathbb{U}(\delta)$

- Every $\delta \in \mathrm{LND}(B)$ induces an element of $\mathrm{Aut}(B)$ via the exponential map, defined as $\exp(\delta) := \sum_{i \geqslant 0} \frac{1}{i!} \delta^i$.
- For any LND δ , each of its replicas $f\delta$ $(f \in \text{Ker}(\delta))$ is also an LND.
- Exponents of all replicas of δ form a commutative subgroup $\mathbb{U}(\delta) := \{\exp(f\delta) \mid f \in \operatorname{Ker}(\delta)\}$, called the big unipotent subgroup corresponding to δ .
- The correspondence $f \leftrightarrow \exp(f\delta)$ induces an isomorphism between $\mathbb{U}(\delta)$ and $(\operatorname{Ker}(\delta), +)$. It is easy to see that for any $\delta \in \operatorname{LND}(B)$, the big unipotent group $\mathbb{U}(\delta)$ is a subgroup of $\operatorname{Aut}(\delta)$.

Question: Is $\mathbb{U}(\delta) \subsetneq \operatorname{Aut}(\delta)$?

• **Yes**, if when B admits an LND δ' which commutes with δ and $\operatorname{Ker}(\delta) \neq \operatorname{Ker}(\delta')$ (for example, B = k[X,Y], $\delta = \frac{\partial}{\partial X}$ and $\delta' = \frac{\partial}{\partial Y}$). Indeed, if such a δ' exists, then, for any $f \in \operatorname{Ker}(\delta) \cap \operatorname{Ker}(\delta')$, $\exp(f\delta')$ is an element of $\operatorname{Aut}(\delta) \setminus \mathbb{U}(\delta)$.

Question : Which automorphisms of B are in $\operatorname{Aut}(\delta)$?

Question : Which automorphisms of B are in $Aut(\delta)$?

• 'Let $A = Ker(\delta)$. Then $\phi \in Aut(\delta) \Rightarrow \phi|_A \in Aut(A)$.

Question: Which automorphisms of B are in $Aut(\delta)$?

• 'Let $A = \operatorname{Ker}(\delta)$. Then $\phi \in \operatorname{Aut}(\delta) \Rightarrow \phi|_A \in \operatorname{Aut}(A)$. Converse is not true. Take B = k[X,Y,Z] and $\delta = X\frac{\partial}{\partial Y} + 2Y\frac{\partial}{\partial Z}$. Then $A = k[X,XZ-Y^2]$. Define $\phi \in \operatorname{Aut}B$ by $\phi(X) = 2X$, $\phi(Y) = Y$ and $\phi(Z) = Z/2$. Then $\phi|_A \in \operatorname{Aut}(A)$. But $\phi\delta(Z) = 2Y \neq Y = \delta\phi(Z)$. So $\phi \notin \operatorname{Aut}(\delta)$.

Question: Which automorphisms of B are in $Aut(\delta)$?

- 'Let $A = \operatorname{Ker}(\delta)$. Then $\phi \in \operatorname{Aut}(\delta) \Rightarrow \phi|_A \in \operatorname{Aut}(A)$. Converse is not true. Take B = k[X,Y,Z] and $\delta = X\frac{\partial}{\partial Y} + 2Y\frac{\partial}{\partial Z}$. Then $A = k[X,XZ-Y^2]$. Define $\phi \in \operatorname{Aut}B$ by $\phi(X) = 2X$, $\phi(Y) = Y$ and $\phi(Z) = Z/2$. Then $\phi|_A \in \operatorname{Aut}(A)$. But $\phi\delta(Z) = 2Y \neq Y = \delta\phi(Z)$. So $\phi \notin \operatorname{Aut}(\delta)$.
- Let $\delta_1 \delta_2 = \delta_2 \delta_1$ Then $f \in \operatorname{Ker}(\delta_1) \cap \operatorname{Ker}(\delta_2) \implies \exp(f \delta_1) \in \operatorname{Aut}(\delta_2)$.

Question: Which automorphisms of B are in $Aut(\delta)$?

- 'Let $A = \operatorname{Ker}(\delta)$. Then $\phi \in \operatorname{Aut}(\delta) \Rightarrow \phi|_A \in \operatorname{Aut}(A)$. Converse is not true. Take B = k[X,Y,Z] and $\delta = X\frac{\partial}{\partial Y} + 2Y\frac{\partial}{\partial Z}$. Then $A = k[X,XZ-Y^2]$. Define $\phi \in \operatorname{Aut}B$ by $\phi(X) = 2X$, $\phi(Y) = Y$ and $\phi(Z) = Z/2$. Then $\phi|_A \in \operatorname{Aut}(A)$. But $\phi\delta(Z) = 2Y \neq Y = \delta\phi(Z)$. So $\phi \notin \operatorname{Aut}(\delta)$.
- Let $\delta_1 \delta_2 = \delta_2 \delta_1$ Then $f \in \operatorname{Ker}(\delta_1) \cap \operatorname{Ker}(\delta_2) \implies \exp(f \delta_1) \in \operatorname{Aut}(\delta_2)$.
- Let $H_f := \{ \theta \in \operatorname{Aut}(A) \mid \theta(f) = f \}$. Then

$$C_{\operatorname{Aut}(\delta)}(\exp(f\delta)) = H_f$$
 and

$$C_{\mathrm{Aut}(\delta)}(\mathbb{U}(\delta)) = \{\theta \in \mathrm{Aut}(\delta) \mid \theta|_{A} = id_{A}\}.$$

Almost rigid domains

Question: What happens when all LNDs are replicas of a canonical one?

- An affine k-domain B is said to be almost rigid if there exists $D \in \mathrm{LND}(B)$ such that every $\delta \in \mathrm{LND}(B)$ can be written as $\delta = hD$, for some $h \in \mathrm{Ker}(D)$. Moreover, D is called the canonical LND on B.
- For an almost rigid domain B with $B^* = k^*$, if D is a canonical LND and $\phi \in \operatorname{Aut}(B)$, then $\phi D \phi^{-1} = \lambda D$, for some $\lambda \in k^*$.

Almost rigid domains

Question: What happens when all LNDs are replicas of a canonical one?

- An affine k-domain B is said to be almost rigid if there exists $D \in \mathrm{LND}(B)$ such that every $\delta \in \mathrm{LND}(B)$ can be written as $\delta = hD$, for some $h \in \mathrm{Ker}(D)$. Moreover, D is called the canonical LND on B.
- For an almost rigid domain B with $B^* = k^*$, if D is a canonical LND and $\phi \in \operatorname{Aut}(B)$, then $\phi D \phi^{-1} = \lambda D$, for some $\lambda \in k^*$.

Example :
$$B := \frac{k[X, Y, Z]}{(f(X)Y - P(Z))}$$
, where $\deg_X f > 1$. Then

- (Bianchi-Veloso (2017))[BiV] B is almost rigid with the canonical LND D given by D(x) = 0, $D(y) = \frac{d\phi}{dz}$ and D(z) = f(x).
- (Baltzar-Veloso (2021))[BaV] Let $\delta \in \mathrm{LND}(B)$. Then $\mathrm{Aut}(\delta)$ is generated by a finite cyclic group of the form

$$\{(\lambda x,y,z)\mid \lambda\in k^* \text{ and } \lambda^s=1\} \text{ and } \mathbb{U}(D),$$

where $f(X) = X^{j}h(X^{s})$ such that $h \in k^{[1]}$ has a non-zero root.

Generalised Danielewski surfaces

Definition.

A k-algebra B is said to be a generalised Danielewski surface over k if B is isomorphic to the k-algebra

$$B_{d,P} := \frac{k[X, Y_1, Y_2]}{(X^d Y_2 - P(X, Y_1))},$$

where $d \geqslant 2$ and $r := \deg_{Y_1}(P) \geqslant 2$. If $P(X, Y_1) = \prod_{i=1}^r (Y_1 - \sigma_i(X))$,

where $\sigma_i(X) \in k[X]$, then the surface $B_{d,P}$ is called a generalised Danielewski surface in standard form.

Generalised Danielewski surfaces

Definition.

A k-algebra B is said to be a generalised Danielewski surface over k if B is isomorphic to the k-algebra

$$B_{d,P} := \frac{k[X, Y_1, Y_2]}{(X^d Y_2 - P(X, Y_1))},$$

where $d \geqslant 2$ and $r := \deg_{Y_1}(P) \geqslant 2$. If $P(X, Y_1) = \prod_{i=1}^r (Y_1 - \sigma_i(X))$, where $\sigma_i(X) \in k[X]$, then the surface $B_{d,P}$ is called a generalised Danielewski surface in standard form.

 $B_{d,P}$ is an almost rigid domain with the canonical Ind $D_{d,P}$, given by

$$D_{d,P} := x^d \frac{\partial}{\partial y_1} + \frac{\partial P}{\partial y_1} \frac{\partial}{\partial y_2}.$$

The automorphism group of $B_{d,P}$ was studied by **A. Dubouloz** and **P-M. Poloni** ([DP], **2009**).

 \mathcal{S}_r : the symmetric group of r elements. id : the identity permutation

- Every automorphism Φ in $\operatorname{Aut}(B_{d,P})$ is uniquely determined by the datum $\mathcal{A}_{\Phi} = (\alpha, \mu, \mathbf{a}, \mathbf{b}(\mathbf{x})) \in \mathcal{S}_r \times \mathbf{k}^* \times \mathbf{k}^* \times \mathbf{k}[\mathbf{x}]$, such that the polynomial $c(\mathbf{x}) := \sigma_{\alpha(i)}(a\mathbf{x}) \mu\sigma_i(\mathbf{x})$ does not depend on the index $i = 1, 2, \ldots, r$.
- Φ is induced by $\Psi \in \operatorname{Aut}(k[X, Y_1, Y_2])$ given by

$$X o aX, \ Y_1 o \mu Y_1 + ilde{c}(X)$$
 and

$$Y_2
ightarrow rac{1}{a^d} \mu^r Y_2 + rac{1}{(aX)^d} \Big(\prod_{i=1}^r ig(\mu Y_1 + ilde{c}(X) - \sigma_i(aX) ig) - \mu^r P(X, Y_1) \Big),$$

where
$$\tilde{c}(X) = c(X) + X^d b(X)$$
.

 \mathcal{S}_r : the symmetric group of r elements. id: the identity permutation

- Every automorphism Φ in $\operatorname{Aut}(B_{d,P})$ is uniquely determined by the datum $\mathcal{A}_{\Phi} = (\alpha, \mu, \mathbf{a}, \mathbf{b}(\mathbf{x})) \in \mathcal{S}_r \times \mathbf{k}^* \times \mathbf{k}^* \times \mathbf{k}[\mathbf{x}]$, such that the polynomial $c(\mathbf{x}) := \sigma_{\alpha(i)}(a\mathbf{x}) \mu\sigma_i(\mathbf{x})$ does not depend on the index $i = 1, 2, \ldots, r$.
- Φ is induced by $\Psi \in \operatorname{Aut}(k[X, Y_1, Y_2])$ given by

$$X o aX, \ Y_1 o \mu Y_1 + ilde{c}(X)$$
 and

$$Y_2 o rac{1}{a^d} \mu^r Y_2 + rac{1}{(aX)^d} \Big(\prod_{i=1}^r ig(\mu Y_1 + ilde{c}(X) - \sigma_i(aX) ig) - \mu^r P(X, Y_1) \Big),$$

where
$$\tilde{c}(X) = c(X) + X^d b(X)$$
.

• The composition $\Phi_2 \circ \Phi_1$ of two automorphisms Φ_1 and Φ_2 of $B_{d,P}$ with data $\mathcal{A}_{\Phi_1} = \left(\alpha_1, \mu_1, a_1, b_1(x)\right)$ and $\mathcal{A}_{\Phi_2} = \left(\alpha_2, \mu_2, a_2, b_2(x)\right)$ respectively is the automorphism of $B_{d,P}$ with datum $\mathcal{A} = \left(\alpha_2\alpha_1, \mu_2\mu_1, a_2a_1, \frac{1}{a_s^d}\mu_2b_1(x) + b_2(a_1x)\right)$.

- Let $\mathbb{U}, \mathbb{H}, \mathbb{S}$ be the subgroups of $\operatorname{Aut}(B_{d,P})$ consisting of the automorphisms corresponding to the data of the type (id,1,1,b(x)),(id,1,a,0) and $(\alpha,\mu,1,0)$ respectively.
- $\operatorname{Aut}(B_{d,P}) \cong (\mathbb{S} \times \mathbb{H}) \ltimes \mathbb{U}$.

Lemma

Let $\delta \in LND(B_{d,P})$ and $\alpha \in Aut(B_{d,P})$. Then the following are equivalent.

- $\alpha \in \operatorname{Aut}(\delta)$.
- $\delta \alpha(y_1) = \alpha \delta(y_1)$.
- $\delta \alpha(y_2) = \alpha \delta(y_2)$.

Lemma

Let $\delta \in LND(B_{d,P})$ and $\alpha \in Aut(B_{d,P})$. Then the following are equivalent.

- $\alpha \in \operatorname{Aut}(\delta)$.
- $\delta \alpha(y_1) = \alpha \delta(y_1)$.
- $\delta \alpha(y_2) = \alpha \delta(y_2)$.

For $G \leq \operatorname{Aut}(B_{d,P})$, define $G_{\delta} := G \cap \operatorname{Aut}(\delta)$.

Theorem I(-,Lahiri)

Let $\delta = f(x)D_{d,P}$, where $f(x) = \sum_{i=0}^{l} a_i x^{n_i} \in k[x] \ (n_i, l \in \mathbb{N} \cup \{0\}, a_i \in k^*)$

for each *i*). Suppose $\mathbb{G} := \operatorname{Aut}(\delta)$ and $n := \operatorname{GCD}(d + n_0, \dots, d + n_l)$. Then the following statements hold.

- ullet The unipotent group $\mathbb{U}\subseteq\mathbb{G}$ and hence $\mathbb{U}_\delta=\mathbb{U}$.
- If $a \in k^*$ with $a^q \neq 1$ for any $q \in \{1, ..., d-1\}$, then $(id, 1, a, 0) \in \mathbb{G}$ if and only if $a^n = 1$ and $n \geqslant d$.

Theorem

- If $a \in k^*$ with $a^{q_0} = 1$ for some minimal $q_0 \in \{2, \dots, d-1\}$, then $(id, 1, a, 0) \in \mathbb{G}$ if and only if $q_0 \mid n$.
- $\mathbb{H}_{\delta} \cong \mathbb{Z}_n$.
- The subgroup $\mathbb{S}_{\delta} = \{ Id_{B_{d,P}} \}$.
- The isotropy subgroup $\mathbb{G}\cong (\mathbb{H}\times\mathbb{S})_{\delta}\ltimes\mathbb{U}.$

Theorem

- If $a \in k^*$ with $a^{q_0} = 1$ for some minimal $q_0 \in \{2, \dots, d-1\}$, then $(id, 1, a, 0) \in \mathbb{G}$ if and only if $q_0 \mid n$.
- $\mathbb{H}_{\delta} \cong \mathbb{Z}_n$.
- The subgroup $\mathbb{S}_{\delta} = \{ Id_{B_{d,P}} \}.$
- The isotropy subgroup $\mathbb{G}\cong (\mathbb{H}\times\mathbb{S})_{\delta}\ltimes\mathbb{U}$.

Remark

- If $\delta = D_{d,P}$, then $\mathbb{U}(\delta) \subsetneq \operatorname{Aut}(\delta)$. Indeed, if $\omega \in k$ be a primitive d-th root of unity, then $(id, 1, \omega, 0) \ (\neq Id_{B_{d,P}}) \in \operatorname{Aut}(\delta)$.
- However, it may happen that $\operatorname{Aut}(\delta) = \mathbb{U}$, when δ is a replica of $D_{d,P}$. For example, if $\delta = (x + x^2)D_{d,P}$, then $(\mathbb{H} \times \mathbb{S})_{\delta} = \{Id_{B_{d,P}}\}$.

Danielewski varieties with constant coefficients

Definition

An affine algebraic variety $\mathbb{V}_{\mathrm{con}}\subseteq\mathbb{K}^{m+1}$ is called a Danielewski variety with constant coefficients if

$$\mathbb{K}[\mathbb{V}_{\text{con}}] = \frac{\mathbb{K}[Y_1, Y_2, \dots, Y_m, Z]}{(Y_1 Y_2^{k_2} \dots Y_m^{k_m} - P(Z))},$$

where $m, k_1, \ldots, k_m, \deg_{\mathbb{Z}}(P) \geqslant 2, P$ monic.

These varieties were introduced by **Dubouloz (2007)** [D07] as counterexamples to the Generalized Zariski Cancellation Problem.

Danielewski varieties with constant coefficients

Definition

An affine algebraic variety $\mathbb{V}_{\mathrm{con}}\subseteq\mathbb{K}^{m+1}$ is called a Danielewski variety with constant coefficients if

$$\mathbb{K}[\mathbb{V}_{\text{con}}] = \frac{\mathbb{K}[Y_1, Y_2, \dots, Y_m, Z]}{(Y_1 Y_2^{k_2} \dots Y_m^{k_m} - P(Z))},$$

where $m, k_1, \ldots, k_m, \deg_Z(P) \geqslant 2, P$ monic.

These varieties were introduced by **Dubouloz (2007)** [D07] as counterexamples to the Generalized Zariski Cancellation Problem.

Theorem (**Dubouloz**)

$$\begin{split} &\text{If } \mathbb{K}[\mathbb{V}_{\operatorname{con}}] = \frac{\mathbb{K}[Y_1,Y_2,\ldots,Y_m,Z]}{(Y_1Y_2^{k_2}\ldots Y_m^{k_m} - P(Z))} \text{ and } \\ &\mathbb{K}[\mathbb{V}_{\operatorname{con}}'] = \frac{\mathbb{K}[Y_1,Y_2,\ldots,Y_m,Z]}{(Y_1Y_2^{k_2'}\ldots Y_m^{k_m'} - P(Z))}, \text{ such that } \\ &(k_2,\ldots,k_m) \neq (k_2',\ldots,k_m'), \text{ then } \mathbb{V}_{\operatorname{con}} \times \mathbb{K} \cong \mathbb{V}_{\operatorname{con}}' \times \mathbb{K} \text{ but } \mathbb{V}_{\operatorname{con}} \not\cong \mathbb{V}_{\operatorname{con}}'. \end{split}$$

Group actions on $\mathbb{V}_{\mathrm{con}}$

Later **Gaifullin** (2021)[G21] studied $Aut(V_{con})$ in detail.

- The stabilizer of the monomial $Y_1Y_2^{k_2}\dots Y_m^{k_m}$ under the natural diagonal action of the m-dimensional algebraic torus $(\mathbb{K}^*)^m$ on $\mathbb{K}[Y_1,Y_2,\dots,Y_m]$ is isomorphic to the (m-1)-dimensional torus, denoted by \mathbb{T} . If we consider the trivial action of \mathbb{T} on $\mathbb{K}[Z]$, then there is an effective action of \mathbb{T} on $\mathbb{V}_{\mathrm{con}}$. \mathbb{T} is called the proper torus of $\mathbb{V}_{\mathrm{con}}$.
- There is a natural action of the symmetric group \mathcal{S}_m on $\mathbb{K}[Y_1,\ldots,Y_m]$. The stabilizer \mathbb{S} of the monomial $Y_1Y_2^{k_2}\ldots Y_m^{k_m}$ is isomorphic to the group $\mathcal{S}_{m_1}\times\cdots\times\mathcal{S}_{m_n}$, where $m=m_1+\cdots+m_n$ and for each $i\in\{1,\ldots,n\}$, \mathcal{S}_{m_i} permutes the m_i many Y_j 's with same k_j . If we consider the trivial action of \mathbb{S} on $\mathbb{K}[Z]$, then there is an effective action of \mathbb{S} on \mathbb{V}_{con} . This group \mathbb{S} is called the symmetric group of \mathbb{V}_{con} .

Different types of actions on $\mathbb{V}_{\mathrm{con}}$

• If $P(Z) = Z^d$, there is also an effective action of an one-dimensional torus \mathbb{K}^* acting by

$$t \cdot (y_1, y_2, \dots, y_m, z) = (t^d y_1, y_2 \dots, y_m, tz), \text{ for all } t \in \mathbb{K}^*.$$

If $P(Z) \neq Z^d$ and v is the maximal integer such that there exists a polynomial $Q(Z) \in \mathbb{K}[Z]$ and a non-negative integer u such that $P(Z) = Z^u Q(Z^v)$, then there is an action of \mathbb{Z}_v (considered as a subgroup of k^*) on \mathbb{V}_{con} , given by

$$t \cdot (y_1, y_2, \dots, y_m, z) = (t^u y_1, y_2, \dots, y_m, tz),$$
 where $t^v = 1$.

In each of these cases, the groups \mathbb{K}^* and \mathbb{Z}_{ν} are called the additional quasitorus of $\mathbb{V}_{\mathrm{con}}$ and denoted by \mathbb{D} .

Different types of actions on $\mathbb{V}_{\mathrm{con}}$

• If $P(Z) = Z^d$, there is also an effective action of an one-dimensional torus \mathbb{K}^* acting by

$$t \cdot (y_1, y_2, \dots, y_m, z) = (t^d y_1, y_2 \dots, y_m, tz), \text{ for all } t \in \mathbb{K}^*.$$

If $P(Z) \neq Z^d$ and v is the maximal integer such that there exists a polynomial $Q(Z) \in \mathbb{K}[Z]$ and a non-negative integer u such that $P(Z) = Z^u Q(Z^v)$, then there is an action of \mathbb{Z}_v (considered as a subgroup of k^*) on \mathbb{V}_{con} , given by

$$t \cdot (y_1, y_2, \dots, y_m, z) = (t^u y_1, y_2, \dots, y_m, tz),$$
 where $t^v = 1$.

In each of these cases, the groups \mathbb{K}^* and \mathbb{Z}_{ν} are called the additional quasitorus of $\mathbb{V}_{\mathrm{con}}$ and denoted by \mathbb{D} .

 $\bullet~\mathbb{K}[\mathbb{V}_{\mathrm{con}}]$ is an almost rigid domain with the canonical LND

$$D_{\text{con}} := P'(z) \frac{\partial}{\partial y_1} + y_2^{k_2} \dots y_m^{k_m} \frac{\partial}{\partial z}$$

• $\operatorname{Aut}(\mathbb{V}_{\operatorname{con}}) \cong \mathbb{S} \ltimes ((\mathbb{T} \times \mathbb{D}) \ltimes \mathbb{U}(D\operatorname{con})).$

Lemma

Let $\delta = hD_{con}$, where $h \in \mathbb{K}[y_2, \dots, y_m]$ and $\theta \in \mathbb{T}$. Then the following statements are equivalent.

- $\delta\theta(y_1) = \theta\delta(y_1)$.
- $h\theta(y_1) = y_1\theta(h)$.
- $\delta\theta(z) = \theta\delta(z)$.
- $\theta \in \operatorname{Aut}(\delta)$.

Corollary

Let $\delta = hD$ con, for some $h \in \mathbb{K}^*$. Then $\mathbb{T}_{\delta} \cong (\mathbb{K}^*)^{m-2} \times \mathbb{Z}_s$, where $s = GCD(k_2, \ldots, k_m)$.

\mathbb{S}_{δ} and \mathbb{D}_{δ}

Lemma

Let $\delta = hD\mathrm{con}$, for some $h \in \mathbb{K}[y_2, \dots, y_m]$ and $\sigma \in \mathbb{S}$. Then the following statements are equivalent.

- $\delta \sigma(y_1) = \sigma \delta(y_1)$.
- $\sigma(h) = h$.
- $\delta \sigma(z) = \sigma \delta(z)$.
- $\sigma \in Aut(\delta)$.

In particular, if $h \in \mathbb{K}^*$, then $\mathbb{S} (= \mathbb{S}_{\delta})$ is a subgroup of $\operatorname{Aut}(\delta)$.

Lemma

Let $\delta = hD_{\mathrm{con}}$, for some $h \in \mathbb{K}[y_2, \ldots, y_m]$. Let $\varphi \in \mathbb{D}$. Then

$$\varphi \in \operatorname{Aut}(\delta) \Leftrightarrow \varphi = \operatorname{Id}.$$

$\operatorname{Aut}(\mathbb{V}_{\operatorname{con}})$ and $\operatorname{Aut}(D_{\operatorname{con}})$

Theorem (Gaifullin)

$$\operatorname{Aut}(\mathbb{V}_{\operatorname{con}}) \cong \mathbb{S} \ltimes ((\mathbb{T} \times \mathbb{D}) \ltimes \mathbb{U}(D_{\operatorname{con}})).$$

Theorem II(-,Lahiri)

The isotropy subgroup Aut(Dcon) can be described as follows.

• If $P(Z) = Z^d$, then

$$\operatorname{Aut}(D_{\operatorname{con}}) \cong \mathbb{S} \ltimes ((\mathbb{K}^*)^{m-1} \ltimes \mathbb{U}(D_{\operatorname{con}})).$$

• If $P(Z) \neq Z^d$ and v is the maximal integer such that $P(Z) = Z^u Q(Z^v)$, then

$$\operatorname{Aut}(D\operatorname{con})\cong \mathbb{S}\ltimes \Big(\big((\mathbb{K}^*)^{m-2}\times \mathbb{Z}_{\mathsf{sv}}\big)\ltimes \mathbb{U}(D\operatorname{con})\Big),$$

where $s = GCD(k_2, \ldots, k_m)$.

Some Remarks

- If $P(Z)=Z^d$, then there exist $\sigma_1\in\mathbb{T}$ and $\sigma_2\in\mathbb{D}$ such that $\sigma_1\sigma_2\in(\mathbb{T}\times\mathbb{D})_{D\mathrm{con}}$ but neither $\sigma_1\in\mathbb{T}_{D\mathrm{con}}$ nor $\sigma_2\in\mathbb{D}_{D\mathrm{con}}$ (= $\{Id\}$). For example, let $\sigma_1(y_1,\ldots,y_m,z)=(\frac{1}{\lambda^{k_2}}y_1,\lambda y_2,y_3,\ldots,y_m,z)$ and $\sigma_2(y_1,y_2,\ldots,y_m,z)=(\lambda^{k_2d}y_1,y_2,\ldots,y_m,\lambda^{k_2}z)$, where $\lambda\in\mathbb{K}^*$ be such that $\lambda^{k_2}\neq 1$.
- If $P(Z) \neq Z^d$ and $v \geqslant 2$ be the maximal integer such that $P(Z) = Z^u Q(Z^v)$ then there exist $\sigma_1 \in \mathbb{T}$ and $\sigma_2 \in \mathbb{D}$ such that $\sigma_1 \sigma_2 \in (\mathbb{T} \times \mathbb{D})_{D \text{con}}$ but neither $\sigma_1 \in \mathbb{T}_{D \text{con}}$ nor $\sigma_2 \in \mathbb{D}_{D \text{con}}$ (= $\{Id\}$). For example, let $\sigma_1(y_1,\ldots,y_m,z) = (\frac{1}{\lambda^{k_2}}y_1,\lambda y_2,y_3,\ldots,y_m,z)$ and $\sigma_2(y_1,y_2,\ldots,y_m,z) = (\lambda^{k_2u}y_1,y_2,\ldots,y_m,\lambda^{k_2}z)$, where $\lambda \in \mathbb{K}^*$ be such that $\lambda^{k_2v} = 1$ but $\lambda^{k_2} \neq 1$.

A threefold by Finston and Maubach

Definition

Consider the Pham-Brieskorn surface

$$R = \frac{\mathbb{C}[X,Y,Z]}{(X^a + Y^b + Z^c)}, \quad \text{where } \frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1.$$

For $m, n \ge 2$, we define the following threefold

$$B_{m,n} = \frac{R[U,V]}{(X^mU - Y^nV - 1)}.$$

They were introduced by **Finston** and **Maubach** in **2008** as another set of examples to the Zariski Cancellation Problem.

A threefold by Finston and Maubach

Definition

Consider the Pham-Brieskorn surface

$$R = \frac{\mathbb{C}[X,Y,Z]}{(X^a + Y^b + Z^c)}, \quad \text{where } \frac{1}{a} + \frac{1}{b} + \frac{1}{c} < 1.$$

For $m, n \ge 2$, we define the following threefold

$$B_{m,n} = \frac{R[U,V]}{(X^mU - Y^nV - 1)}.$$

They were introduced by **Finston** and **Maubach** in **2008** as another set of examples to the Zariski Cancellation Problem. They showed

- $B_{m,n}$ is a UFD, but not regular.
- If $(m,n) \neq (m',n')$, then $B_{m,n} \ncong B_{m',n'}$ but $B_{m,n}^{[1]} \cong B_{m',n'}^{[1]}$.
- $B_{m,n}$ is almost rigid with canonical LND

$$D_{m,n} = y^n \frac{\partial}{\partial u} + x^m \frac{\partial}{\partial v}.$$

$\operatorname{Aut}(B_{m,n})$

Theorem (Finston, Maubach)

 $Aut(B_{m,n})$ is generated by the following elements.

- $\theta_f^+(x,y,z,u,v) \rightarrow (x,y,z,u+f(x,y,z)y^n,v+f(x,y,z)x^m)$, for $f \in R$.
- $\bullet \ \theta_{\mu}^*(x,y,z,u,v) \to \big(\mu^{bc}x,\mu^{ac}y,\mu^{ab}z,\frac{1}{\mu^{mbc}}u,\frac{1}{\mu^{nac}}v\big), \ \text{for} \ \mu \in \mathbb{C}^*.$

$\operatorname{Aut}(B_{m,n})$

Theorem (**Finston, Maubach**)

 $Aut(B_{m,n})$ is generated by the following elements.

- $\theta_f^+(x, y, z, u, v) \rightarrow (x, y, z, u + f(x, y, z)y^n, v + f(x, y, z)x^m)$, for $f \in R$.
- $\bullet \ \theta_{\mu}^*(x,y,z,u,v) \to \big(\mu^{bc}x,\mu^{ac}y,\mu^{ab}z,\frac{1}{\mu^{mbc}}u,\frac{1}{\mu^{nac}}v\big), \ \text{for} \ \mu \in \mathbb{C}^*.$

So $\operatorname{Aut}(B_{m,n}) \cong \mathbb{C}^* \rightthreetimes \mathbb{U}(D_{m,n}).$

Let $\mathbb{T} := \mathsf{set}$ of automorphisms induced by the action of \mathbb{C}^* .

Lemma

Let $\delta \in hD_{m,n}$, where $h \in R \setminus \{0\}$ and $\theta := \theta_{\mu}^* \in \mathbb{T}$. Then TFAE

- $\theta \in \operatorname{Aut}(\delta)$,
- $\delta\theta(\mu) = \theta\delta(\mu)$,
- $\delta\theta(v) = \theta\delta(v)$,
- $\mu^{nac+mbc}\theta(h)=h$.

$Aut(\delta)$

Theorem (-, Lahiri)

Let $\delta \in hD_{m,n}$, where $h \in R \setminus \{0\}$. Then

- ullet \mathbb{T}_{δ} is a finite cyclic group.
- $\operatorname{Aut}(\delta) \cong \mathbb{T}_{\delta} \times \mathbb{U}(D_{m,n})$.

$Aut(\delta)$

Theorem (-,Lahiri)

Let $\delta \in hD_{m,n}$, where $h \in R \setminus \{0\}$. Then

- \mathbb{T}_{δ} is a finite cyclic group.
- $\operatorname{Aut}(\delta) \cong \mathbb{T}_{\delta} \times \mathbb{U}(D_{m,n}).$

Remarks

- If $h = \sum_{r,s,t\geqslant 0,r < a} a_{r,s,t} x^r y^s z^t$, then $\theta_{\mu} \in \operatorname{Aut}(\delta) \Leftrightarrow \mu^{bc(m+r)+ac(n+s)+abt} = 1.$
- If $\delta = D_{m,n}$, then $\mathbb{U}(\delta) \subsetneq \operatorname{Aut}(\delta)$ as mbc + nac > 2.
- Let a>2 and $\delta=(x+x^2)D_{m,n}$. Then $\mathbb{T}_{\delta}=\{id_{B_{m,n}}\}$ and hence $\mathbb{U}(\delta)=\mathrm{Aut}(\delta)$.

Isotropy subgroups in $k^{[2]}$

Theorem (Rentschler (1968))[R]

Let $D(\neq 0) \in \text{LND}(k[X, Y])$. There there exists an automorphism $\alpha \in \text{Aut}(k[X, Y])$ and $f(X) \in k[X]$ such that $\alpha D\alpha^{-1} = f(X)\frac{\partial}{\partial Y}$.

Isotropy subgroups in $k^{[2]}$

Theorem (Rentschler (1968))[R]

Let $D(\neq 0) \in \text{LND}(k[X, Y])$. There there exists an automorphism $\alpha \in \text{Aut}(k[X, Y])$ and $f(X) \in k[X]$ such that $\alpha D\alpha^{-1} = f(X)\frac{\partial}{\partial Y}$.

Theorem (Baltzar, Veloso (2021))[BaV]

Let $D = f(X) \frac{\partial}{\partial Y}$, where $f(X) \in k[X]$. Then all elements of $\operatorname{Aut}(D)$ are of the form

$$\begin{pmatrix} X \\ Y \end{pmatrix} \rightarrow \begin{pmatrix} aX + b \\ cY + p(X) \end{pmatrix},$$

where $a, b, c \in k$, $bc \neq 0$, $p(X) \in k[X]$, f(aX + b) = cf(X).

Isotropy subgroups in $k^{[2]}$

Theorem (Rentschler (1968))[R]

Let $D(\neq 0) \in \text{LND}(k[X, Y])$. There there exists an automorphism $\alpha \in \text{Aut}(k[X, Y])$ and $f(X) \in k[X]$ such that $\alpha D\alpha^{-1} = f(X)\frac{\partial}{\partial Y}$.

Theorem (Baltzar, Veloso (2021))[BaV]

Let $D = f(X) \frac{\partial}{\partial Y}$, where $f(X) \in k[X]$. Then all elements of $\operatorname{Aut}(D)$ are of the form

$$\begin{pmatrix} X \\ Y \end{pmatrix} \rightarrow \begin{pmatrix} aX + b \\ cY + p(X) \end{pmatrix}$$

where $a, b, c \in k$, $bc \neq 0$, $p(X) \in k[X]$, f(aX + b) = cf(X).

Remarks

- If $n := \deg_X f$, then $c = a^n$.
- Aut(D) = $\mathbb{U}(\frac{\partial}{\partial Y})$ if and only if $\{\phi|_{k[X]} \mid \phi \in \text{Aut}(D) \text{ and } \phi(f) = \lambda f, \ \lambda \in k^*\} = \{id\}.$

An elementary result

Let $B \in LND(k^{[3]})$ and $D_1, D_2 \in LND(B)$.

Proposition

 $\mathbb{U}(D_2)\subseteq \operatorname{Aut}(D_1)\Leftrightarrow \operatorname{Ker}(D_1)=\operatorname{Ker}(D_2).$

An elementary result

Let $B \in LND(k^{[3]})$ and $D_1, D_2 \in LND(B)$.

Proposition

 $\mathbb{U}(D_2) \subseteq \operatorname{Aut}(D_1) \Leftrightarrow \operatorname{Ker}(D_1) = \operatorname{Ker}(D_2).$

Remarks

- $\operatorname{Aut}(D_1) = \operatorname{Aut}(D_2) \Rightarrow \operatorname{Ker}(D_1) = \operatorname{Ker}(D_2).$
- Converse need not be true. Let $B=k[X,Y,Z],\ D_1=Y\frac{\partial}{\partial Z}$ and $D_2=X\frac{\partial}{\partial Z}$. Then $\mathrm{Ker}(D_1)=\mathrm{Ker}(D_2)=k[X,Y]$. Consider the automorphsim ϕ of B given by

$$\phi(X,Y,Z)=(X+Y,Y,Z+X).$$

Then $\phi \in \operatorname{Aut}(D_1) \setminus \operatorname{Aut}(D_2)$.

Triangularizable LNDs

Definition

An LND D on $B = k^{[3]}$ is said to be triangularizable if there exists a coordinate system (X, Y, Z) of B with respect to which D is triangular, i.e.,

$$D(X) = 0$$
, $D(Y) \in k[X]$ and $D(Z) \in k[X, Y]$.

Triangularizable LNDs

Definition

An LND D on $B = k^{[3]}$ is said to be triangularizable if there exists a coordinate system (X, Y, Z) of B with respect to which D is triangular, i.e.,

$$D(X) = 0$$
, $D(Y) \in k[X]$ and $D(Z) \in k[X, Y]$.

Theorem III(-, Gaifullin)

Let $B = k^{[3]}$ and $D(\neq 0) \in \mathrm{LND}(B)$. TFAE

- There exists a locally nilpotent derivation δ of rank 1 such that $Exp(\delta) \in Aut(D)$.
- D is triangularizable.

Triangularizable LNDs

Definition

An LND D on $B = k^{[3]}$ is said to be triangularizable if there exists a coordinate system (X, Y, Z) of B with respect to which D is triangular, i.e.,

$$D(X) = 0$$
, $D(Y) \in k[X]$ and $D(Z) \in k[X, Y]$.

Theorem III(-, Gaifullin)

Let $B = k^{[3]}$ and $D(\neq 0) \in \mathrm{LND}(B)$. TFAE

- There exists a locally nilpotent derivation δ of rank 1 such that $Exp(\delta) \in Aut(D)$.
- *D* is triangularizable.

Remark

Suppose B=k[X,Y,Z] and $\delta=f(X,Y)\frac{\partial}{\partial Z}$, then one can get the desired coordinate system by applying a "tame" automorphism.

An Example in $k^{[4]}$

Let B = k[X, Y, Z] and

$$\Delta = X \frac{\partial}{\partial Y} + 2Y \frac{\partial}{\partial Z}.$$

Then

$$\operatorname{Ker}(\Delta) = k[X, F]$$
 where $F = XZ - Y^2$.

For each $t \in k^*$, let $D_t := tF\Delta$. Extend D_t to $\tilde{D}_t \in \mathrm{LND}(B[W])$ by setting $\tilde{D}_t(W) = 0$. Then

- D_t is not triangularizable (Bass (1984)[B84]).
- \tilde{D}_t is not triangularizable. (**Freudenburg**[F]).
- But $\frac{\partial}{\partial W} \in \operatorname{Aut}(\tilde{D}_t)$.

So Theorem III does not extend to higher dimensions.

Rank one LNDs

Definition

Let B be an affine k-domain and $f \in B$. Define

$$\operatorname{Aut}(B)^{(f)} := \{ \theta \in \operatorname{Aut}(B) \mid \theta(f) = \lambda f, \text{ for some } \lambda \in k^* \}.$$

Rank one LNDs

Definition

Let B be an affine k-domain and $f \in B$. Define

$$\operatorname{Aut}(B)^{(f)} := \{ \theta \in \operatorname{Aut}(B) \mid \theta(f) = \lambda f, \text{ for some } \lambda \in k^* \}.$$

Theorem IV(-, Gaifullin)

Let B be an affine domain and $B^*=k^*$. Let $D,\delta\in\mathrm{LND}(B)$ such that δ has a slice and $D=h\delta$ for some $h\in\mathrm{Ker}(\delta):=A$. Then

$$\operatorname{Aut}(D) \cong \operatorname{Aut}(A)^{(h)} \times \mathbb{U}(\delta).$$

Rank one LNDs

Definition

Let B be an affine k-domain and $f \in B$. Define

$$\operatorname{Aut}(B)^{(f)} := \{ \theta \in \operatorname{Aut}(B) \mid \theta(f) = \lambda f, \text{ for some } \lambda \in k^* \}.$$

Theorem IV(-, Gaifullin)

Let B be an affine domain and $B^*=k^*$. Let $D,\delta\in\mathrm{LND}(B)$ such that δ has a slice and $D=h\delta$ for some $h\in\mathrm{Ker}(\delta):=A$. Then

$$\operatorname{Aut}(D) \cong \operatorname{Aut}(A)^{(h)} \rightthreetimes \mathbb{U}(\delta).$$

Corollary I(-, Gaifullin)

Let $B = k^{[3]}$ and $D \in LND(B)$. Then $Aut(D) \cong Aut(k^{[2]}) \times U(D)$ in the following cases :

- D is fixed point free.
- $D^2(X) = D^2(Y) = D^2(Z) = 0$.

A useful Lemma

Lemma

Let $B = k^{[3]}$, $D(\neq 0) \in \text{LND}(B)$ and A = Ker(D). Let g be a local slice of D with $D(g) = f \in A$. If $\delta := D \mid_{A[g]}$, then

- $\delta = f \frac{\partial}{\partial g} \in \text{LND}(A[g]).$
- there exists a **injective** group homomorphism $\Phi: \operatorname{Aut}(D) \to \operatorname{Aut}(\delta)$.
- $\operatorname{Aut}(\delta) \cong \operatorname{Aut}(A)^{(f)} \times \mathbb{U}(\frac{\partial}{\partial g}).$
- $\Phi(\mathbb{U}(D)) = \{ Exp(h\delta) \mid h \in A \}.$

A useful Lemma

Lemma

Let $B = k^{[3]}$, $D(\neq 0) \in \text{LND}(B)$ and A = Ker(D). Let g be a local slice of D with $D(g) = f \in A$. If $\delta := D \mid_{A[g]}$, then

- $\delta = f \frac{\partial}{\partial g} \in \text{LND}(A[g]).$
- there exists a **injective** group homomorphism $\Phi: \operatorname{Aut}(D) \to \operatorname{Aut}(\delta)$.
- $\operatorname{Aut}(\delta) \cong \operatorname{Aut}(A)^{(f)} \rightthreetimes \mathbb{U}(\frac{\partial}{\partial g}).$
- $\Phi(\mathbb{U}(D)) = \{ Exp(h\delta) \mid h \in A \}.$

Remark

Any $\phi \in \operatorname{Aut}(A)^{(f)}$ with $\phi(f) = \lambda f$ ($\lambda \in k^*$) can be uniquely extended to an element of $\operatorname{Aut}(A[g])$ by setting $\phi(g) = \lambda g$.

Definition

An LND D on the affine domain B is said to be **reducible** if there exists $b \in B$ such that $D(B) \subseteq (b)B$. Otherwise, D is **irreducible**.

Definition

An LND D on the affine domain B is said to be **reducible** if there exists $b \in B$ such that $D(B) \subseteq (b)B$. Otherwise, D is **irreducible**.

If B is a UFD and $D \in LND(B)$ then D can be written as a replica of an irreducible LND, which is unique upto multiplication by a unit.

Definition

An LND D on the affine domain B is said to be **reducible** if there exists $b \in B$ such that $D(B) \subseteq (b)B$. Otherwise, D is **irreducible**.

If B is a UFD and $D \in LND(B)$ then D can be written as a replica of an irreducible LND, which is unique upto multiplication by a unit.

Lemma

Let $B = k^{[3]}$ and $D \in \mathrm{LND}(B)$ be irreducible of rank at most 2. Then there exists a variable X of B and $g \in B$ such that D(g) = f(X).

Definition

An LND D on the affine domain B is said to be **reducible** if there exists $b \in B$ such that $D(B) \subseteq (b)B$. Otherwise, D is **irreducible**.

If B is a UFD and $D \in LND(B)$ then D can be written as a replica of an irreducible LND, which is unique upto multiplication by a unit.

Lemma

Let $B = k^{[3]}$ and $D \in \text{LND}(B)$ be irreducible of rank at most 2. Then there exists a variable X of B and $g \in B$ such that D(g) = f(X).

Lemma

Let B = k[X, Y, Z], $D(\neq 0) \in \text{LND}(B)$ be irreducible of rank 2 and A = Ker D. Assume that D(X) = 0.

- (i) There exist $v, g \in B$ such that A = k[X, v] and D(g) = f(X),
- (ii) $\operatorname{Aut}(\delta) \cong \operatorname{Aut}(A)^{(f)} \times U(\frac{\partial}{\partial g})$, where $\delta = D|_{A[g]}$ and

Lemma

(iii) if
$$n := \deg_X f$$
, then $\operatorname{Aut}(A)^{(f)} =$

$$\left\{\phi\in \operatorname{Aut}(A) \middle| \begin{array}{l} \phi(X)=aX+b \text{ where } a\in k^*,\ b\in k,\ \phi(f)=a^nf,\\ \phi(v)=\mu v+\beta(X),\ \mu\in k^* \text{ and } \beta(X)\in k[X]. \end{array}\right\}$$

Lemma

(iii) if $n := \deg_X f$, then $\operatorname{Aut}(A)^{(f)} =$

$$\left\{\phi \in \operatorname{Aut}(A) \middle| \begin{array}{l} \phi(X) = aX + b \text{ where } a \in k^*, \ b \in k, \ \phi(f) = a^n f, \\ \phi(v) = \mu v + \beta(X), \ \mu \in k^* \text{ and } \beta(X) \in k[X]. \end{array} \right\}$$

Let us look at the following example due to Bass.

$$D(X) = 0$$
, $D(Y) = X$ and $DZ = -2Y$.

- D is triangular of rank 2.
- Ker D = A = k[X, v], where $v = XZ + Y^2$ and $D|_A := \delta = X \frac{\partial}{\partial Y}$.
- $A \cap D(B) = (X)$.
- $G \cong \left\{ \phi \in \operatorname{Aut}(A) \mid \begin{array}{c} \phi(X) = \lambda X, & \lambda \in k^*, \\ \phi(v) = \lambda^2 v + X \beta(X), & \beta(X) \in k[X]. \end{array} \right\}$
- $\operatorname{Aut}(\delta) \cong G \wedge \mathbb{U}(D)$.

References

References

- [BaV] R. Baltazar and M. O. Veloso, On isotropy group of Danielewski surfaces, Comm. Alg. 49(3) (2021) 1006–1016.
- [B84] H. Bass, A non-triangular action of \mathbb{G}_a on \mathbb{A}^3 , J. Pure Appl. Algebra **33** (1984) 1–5.
- [BiV] A. C. Bianchi and M. O. Veloso, Locally nilpotent derivations and automorphism groups of certain Danielweski surfaces, J. Algebra 469 (2017) 96–108.
- [DL] N. Dasgupta, A. Lahiri, Isotropy subgroup of some almost rigid domains, Journal of Pure and Applied Algebra, 227(4) (2023).
- [D07] A. Dubouloz, Additive group actions on Danielweski varieties and the cancellation problem, Math. Z. 255(1) (2007) 77–93.
- [DP] A. Dubouloz and P-M. Poloni, On a class of Danielewski surfaces in affine 3-space, J. Algebra 321 (2009) 1797–1812.
 - [F] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Second Edition, Springer-Verlag, Berlin, Heidelberg (2017).
- [G21] S. Gaifullin, Automorphisms of Danielewski varieties, J. Algebra 573 (2021) 364–392.

Thank you!