Residual coordinates of affine fibrations and their applications

Prosenjit Das

Department of Mathematics, Indian Institute of Space Science and Technology

Indian Institute of Space Science and Technolog Thiruvananthapuram

ISI, 11-18 March 2023

イロト 不同 トイヨト イヨト

≡ nar

Table of Contents

Notation and Definitions

- Provide a strain and the strain a
- 3 Residual coordinates of polynomial algebras ([BD93])
- Residual coordinates of A³-fibrations ([EK13])
- 5 Residual coordinates of affine fibrations ([DD14])
- 6 Residual coordinates of *Rⁿ* are *m*-stable coordinates: Bounds on *m*

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Notation

Notation

- R := A commutative ring with unity.
- A := An R-algebra.
- K := Quotient field of R, whenever R is domain.
- Spec(R) := Collection of all prime ideals of R.
- k(P) := The residue field R_P/PR_P , where $P \in Spec(R)$.
- $R^{[n]} :=$ The polynomial algebra in *n* variables over *R*.
- $A = R^{[n]} := A$ is isomorphic, as an *R*-algebra, to the polynomial algebra $R^{[n]}$.
- $\Omega_R(A) :=$ module of differentials of A over R.

▲口▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - のなべ

Definitions

Definitions

• $D: A \longrightarrow A$ is an *R*-derivation of *A* if $\forall a, b \in A$ and $r_1, r_2 \in R$, $D(r_1a + r_2b) = r_1D(a) + r_2D(b)$ and D(ab) = aD(b) + bD(a).

Let D be an R-derivation of A.

- *D* is called a locally nilpotent *R*-derivation (*R*-LND) of *A* if for each $x \in A$, there exists $n \in \mathbb{N}$ such that $D^n(x) = 0$, i.e., $D^{n-1}(x) \in \text{Ker}(D)$.
- D is said to have a slice $s \in A$ if D(s) = 1, i.e., D is surjective.
- D is called fixed point free (FPF) if D(A)A = A.

イロン 人間 とくほとくほど

E nac

Definitions

- A is said to be an Aⁿ-fibration over R if it is finitely generated and flat over R, and satisfies A ⊗_R k(P) = k(P)^[n] for all P ∈ Spec(R).
- A is called stably polynomial over R if $A^{[m]} = R^{[n]}$ for some $m, n \in \mathbb{N}$.
- Let A be an \mathbb{A}^{n} -fibration over R. $F \in A$ is called a *m*-stable coordinate of A if $A^{[m]} = R[F]^{[m+n-1]}$.
- *R* is called a retract of *A* if there is an *R*-algebra surjection $\phi : A \longrightarrow R$ and $\phi|_R = id_R$.

Let $R \subseteq A$ be domains.

• R is called inert or factorially closed in A if $f, g \in A$ and $fg \in R$ implies that $f, g \in R$.

A few well-known results

- Slice Theorem: $\mathbb{Q} \hookrightarrow R$ a ring. If D is an R-LND of A with a slice s, then $A = \text{Ker}(D)[s] = \text{Ker}(D)^{[1]}$.
- If A is a domain, then Ker(D) is inert in A and $tr.deg_{Ker(D)}(A) = 1$.
- If $\mathbb{Q} \hookrightarrow R$ is Noetherian and $A^{[m]} = R^{[m+2]}$, then A is an \mathbb{A}^2 -fibration over R.

イロト イロト イヨト イヨト

= nar

Table of Contents

Notation and Definitions

- 2 Residual coordinates of R[X, Y] ([Bha88])
- 3 Residual coordinates of polynomial algebras ([BD93])
- Residual coordinates of A³-fibrations ([EK13])
- **5** Residual coordinates of affine fibrations ([DD14])
- 6 Residual coordinates of *Rⁿ* are *m*-stable coordinates: Bounds on *m*

References

Residual coordinates of R[X, Y] ([Bha88])

To generalized Abhyankar-Moh & Suzuki Epimorphism Theorem

Definition (Bhatwadekar, [Bha88])

 $W \in R[X, Y]$ is called a residual coordinate if $R[X, Y] \otimes_R k(P) = (R[W] \otimes_R k(P))^{[1]} = k(P)[\overline{W}]^{[1]}$ for each $P \in \text{Spec}(R)$.

Example 1

$$R = \mathbb{Q}[t]_{(t)}, \ F = t^2Y + (X + tY^2) + t(X + tY^2)^2 \in R[X, Y]$$

 $\operatorname{Spec}(R) = \{0, tR\}.$

In $R[X, Y] \otimes_R k(0) = \mathbb{Q}(t)[X, Y]$: \overline{F} is a variable of $\mathbb{Q}(t)[X, Y]$ $(X, Y) \longrightarrow (X + tY^2, Y) \longrightarrow (X + tY^2, t^2Y + (X + tY^2) + t(X + tY^2)^2)$

In $R[X, Y] \otimes_R k(tR) = R/tR[X, Y] = \mathbb{Q}[X, Y]$: $\overline{F} = X$ is a variable of $\mathbb{Q}[X, Y]$.

So, F is a residual variable of R[X, Y]. Question: Is F a variable of R[X, Y]?

Residual coordinates of R[X, Y] ([Bha88])

His observations:

- If F is a residual coord. of R[X, Y], then $R[X, Y] \otimes_{R[F]} k(Q) = k(Q)^{[1]}$ for all $Q \in \text{Spec}(R[F])$.
- If F is a residual coord. of R[X, Y], then $\Omega_{R[F]}(R[X, Y])$ is free of rank one over R[X, Y].
- If R is a domain of characteristics zero and R[X, Y]/(F) = R^[1], then F is a residual coord. of R[X, Y].
- If dim $(R) < \infty$, R is a Noetherian ring and $R[X, Y]/(F) = R^{[1]}$, then R[X, Y] is R[F]-flat.

Application: Generalized Epimorphism Theorem

Proving Generalized Epimorphism Theorem

Theorem 2 (Generalized Epimorphism Theorem, [Bha88])

R a ring, either contains \mathbb{Q} or *R* is a seminormal domain of characteristic zero.

 $R[X, Y]/(F) = R^{[1]} \implies R[X, Y] = R[F]^{[1]}$

Sketch of proof:

By proper reduction arguments can assume that

R is a finite dimensional Noetherian domain either contains \mathbb{Q} or is seminormal.

 $R[X, Y]/(F) = R^{[1]} \implies$

- F is a residual coord. of $R[X, Y] \implies R[X, Y] \otimes_{R[F]} k(Q) = k(Q)^{[1]}$ for all $Q \in \operatorname{Spec}(R[F])$.
- R[X, Y] is R[F]-flat.
- \implies R[X, Y] is an \mathbb{A}^1 -fibration over R[F]
- \implies $(\Omega_{R[F]}(R[X, Y] \text{ is free } R[X, Y] \text{-module})$ by Asanuma [Asa87]) $R[X, Y]^{[m]} = R[F]^{[m+1]}$
- $\implies (\mathbb{Q} \hookrightarrow R \text{ or } R \text{ is seminormal, by Hamann ([Ham75]))} R[X, Y] = R[F]^{[1]}.$

イロト 不同 トイヨト イヨト

= nar

Table of Contents

1 Notation and Definitions

- Provide a strain and the strain a
- 8 Residual coordinates of polynomial algebras ([BD93])
- 4 Residual coordinates of A³-fibrations ([EK13])
- **5** Residual coordinates of affine fibrations ([DD14])
- 6 Residual coordinates of *Rⁿ* are *m*-stable coordinates: Bounds on *m*

References References

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Residual coordinates of polynomial algebras ([BD93])

Theorem 3 (Bhatwadekar-Dutta, [BD93])

R a Noetherian ring and $W \in R[X, Y]$. Then, the following are equivalent.

- W is a residual coord. in R[X, Y].
- $R[X, Y]^{[m]} = R[W]^{[m+1]}$ for some $m \ge 0$.

• $R[W] \subseteq R[X, Y] \subseteq R[W]^{[n]}$ for some $n \in \mathbb{N}$.

Observation: If W is a residual coord. of R[X, Y], then R[X, Y] is R[W]-flat.

Sketch of the proof:

Residual coordinates of polynomial algebras ([BD93])

Theorem 3 (Bhatwadekar-Dutta, [BD93])

R a Noetherian ring and $W \in R[X, Y]$. Then, the following are equivalent.

• W is a residual coord. in R[X, Y].

•
$$R[X, Y]^{[m]} = R[W]^{[m+1]}$$
 for some $m \ge 0$.

• $R[W] \subseteq R[X, Y] \subseteq R[W]^{[n]}$ for some $n \in \mathbb{N}$.

Observation: If W is a residual coord. of R[X, Y], then R[X, Y] is R[W]-flat.

Sketch of the proof:

(1) \implies (2): Asanuma ([Asa87]). (2) \implies (3): Trivial. (3) \implies (1): R[W] is a retract of R[X, Y] and therefore, the inclusions in $R[W] \subseteq R[X, Y] \subseteq R[W]^{[n]}$ are preserved under $\otimes_R k(P)$ for each $P \in \text{Spec}(R) \implies$ $k(P)[W] \hookrightarrow k(P)[X, Y] \hookrightarrow k(P)[W]^{[n]}$ for each $P \in \text{Spec}(R) \implies$ (By Abhyankar-Eakin-Heinzer, [AEH72]) $k(P)[X, Y] = k(P)[W]^{[1]}$ for each $P \in \text{Spec}(R) \implies W$ is a residual coord. of R[X, Y].

Residual coordinates of R[X, Y] are variables! [BD93]

Theorem 4 (Bhatwadekar-Dutta, [BD93])

R a Noetherian ring either containing \mathbb{Q} or R_{red} is seminormal. $W \in R[X, Y]$ is residual coord. (equiv. $R[W] \subseteq R[X, Y] \subseteq R[W]^{[\ell]}$) if and only if $R[X, Y] = R[W]^{[1]}$. (Review GET)

Examples

Example: Theorem 4 does not hold if R does not contain \mathbb{Q} or R_{red} is seminormal.

 $R = \mathbb{Z}_{(2)}[2\sqrt{2}]$. If $t = \sqrt{2}$, then $t^2, t^3 \in R$ and $t \notin R : R$ is not seminormal. $W = X - 2Y(tX - Y^2) + t(tX - Y^2)^2 - t(Y - t(tX - Y^2))^4 \in R[X, Y]$. *W* is a residual coord., but $R[X, Y]/(W) \neq R^{[1]}$ and therefore $R[X, Y] \neq R[W]^{[1]}$.

Question: If W is residual coord. of R[X, Y] and $R[X, Y]/(W) = R^{[1]}$, is then $R[X, Y] = R[W]^{[1]}$?

Example: Theorem 4 does not hold under the setup $R[W] \subseteq R[X, Y, Z] (= R^{[3]}) \subseteq R[W]^{[n]}$:

R = k, a field. $X = U^2 + W$, $Y = V^2(U^2 + W) + 2UV + 1$, $Z = V(U^2 + W) + U$ See that $W = XY - Z^2$ and $k[W] \subset k[X, Y, Z] \subset k[U, V, W]$, but W is not a variable of R[X, Y, Z].

Residual coordinates which is a line but not a variable

Question: R a Noetherian domain and $W \in R[X, Y]$ is a residual coord. of R[X, Y]. If $R[X, Y]/(W) = R^{[1]}$, is then W a variable of R[X, Y]?

Asanuma-Dutta, On a residual coordinate which is a non-trivial line. J. Pure Appl. Algebra 225 (2021), no. 4, Paper No. 106523, [AD21].

Theorem 6 (Asanuma-Dutta, [AD21])

k an infinite field, ch(k) = p > 2, $R := k[[t^2, t^3]]$, $\tilde{R} := k[[t]]$, the normalisation of R, $I := (t^2, t^3)R = t^2\tilde{R}$, the conductor ideal of \tilde{R} in R.

Let $\overline{\tau}: (X, Y) \mapsto (X + \overline{t}X^{p}Y^{p}, Y) \in Aut_{\widetilde{R}/C}(\widetilde{R}/C[X, Y])$. Then,

- There exists $\tau \in Aut_{\widetilde{R}}(\widetilde{R}[X, Y])$ such that τ is a lift of $\overline{\tau}$.
- $\tau(Y) \in R[X, Y]$
- $\tau(Y)$ is a residual coordinate of R[X, Y]
- $R[X, Y]/(\tau(Y)) = R^{[1]}$.
- $R[X, Y]/(\tau(Y) 1) \neq R^{[1]} \implies \tau(Y)$ is not a coordinate of R[X, Y].

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

Applications

Bhatwadekar-Dutta, On residual variables and stably polynomial algebras. Comm. Algebra 21 (1993), no. 2, 635–645, [BD93]:

Theorem 7 (Bhatwadekar-Dutta, [BD93])

R a Noetherian domain, ch(R) = 0, either $\mathbb{Q} \hookrightarrow R$ or *R* is seminormal. $R[X, Y, Z]/(F) = R[U, V] = R^{[2]}$ and there exists $W \in R[X, Y]$ such that $R[U, V] = R[\overline{W}]^{[1]}$. Then $R[X, Y, Z] = R[W, F]^{[1]}$.

Proof: If $F \in R[X, Y]$, then $(R[X, Y]/(F))[Z] = R^{[2]}$ and by Hamannn ([Ham75]) and Generalized Epimorphism theorem ([Bha88]) $R[X, Y] = R[F]^{[1]}$ and hence $R[X, Y, Z] = R[F, Z]^{[1]}$.

If $F \notin R[X, Y]$, then $R[W] \subseteq R[X, Y] \hookrightarrow R[X, Y, Z]/(F) = R[U, V] = R[W]^{[1]} \Longrightarrow$ ([BD93]) *W* is a residual coord. of R[X, Y] and hence by [BD93] R[X, Y] = R[W, V]. Thus, $R[W][V, Z]/(F) = R[W]^{[1]} \Longrightarrow$ (Generalized Epimorphism theorem, [Bha88]) $R[W][V, Z] = R[W][F]^{[1]}$, i.e., $R[X, Y, Z] = R[W, F]^{[1]}$.

Applications

Das-Dutta, Planes of the form $b(X, Y)Z^n - a(X, Y)$ over a DVR. J. Commut. Algebra 3 (2011), no. 4, 491–509, [DD11]:

Das-Dutta extended an Epimorphism result of Wright over algebraically closed field to any field:

Theorem 8 (Das-Dutta, [DD11])

$$k$$
 a field, $ch(k) = p \ge 0$, $g := b(X,Y)Z^n - a(X,Y) \in k[X,Y,Z]$, $b \ne 0$, $p \nmid n$.

If $B := k[X, Y, Z]/(g) = k^{[2]}$, then exist variables $U, V \in B$ such that V is the image of Z in $B, U \in k[X, Y], b \in k[U], k[X, Y] = k[U, a]$ and k[X, Y, Z] = k[U, g, Z].

Using the theory of residual coord. the above result gets generalized to the ring case.

Theorem 9 (Das-Dutta, [DD11])

k a field and $k \hookrightarrow R$ a Noetherian domain. $ch(k) = p \ge 0$. $g := b(X, Y)Z^n - a(X, Y) \in R[X, Y, Z], b \ne 0, p \nmid n$.

If $R[X, Y, Z]/(g) = R^{[2]}$, then $R[X, Y] = R[a]^{[1]}$ and $R[X, Y, Z] = R[a, Z]^{[1]} = R[g, Z]^{[1]}$ provided either $\mathbb{Q} \hookrightarrow R$ or if R is seminormal.

Prosenjit Das (IIST Trivandrum)

Applications

Berson-Bikker-van den Essen: Adapting coordinates. J. Pure Appl. Algebra 184 (2003), no. 2-3, 165–174, [BBE03]:

Corollary 10 (Berson-Bikker-van den Essen, [BBE03])

R a ring. $F \in R[X, Y]$ and $a \in R$.

F is a coordinate of R[X, Y] if and only if it remains coordinate in $R_a[X, Y]$ and in R/aR[X, Y].

Conjecture: R a ring and $a \in R$. If $(F_1, F_2, \dots, F_{n-1}) \in R[X_1, X_2, \dots, X_n]$ is a partial coordinate system of $R_a[X_1, X_2, \dots, X_n]$ and of $R/aR[X_1, X_2, \dots, X_n]$, then $(F_1, F_2, \dots, F_{n-1})$ is a partial coordinate-system of $R[X_1, X_2, \dots, X_n]$.

In [BBE03]: shown that if a is a non-zero divisor, then the conjecture is true.

Lahiri, A note on partial coordinate system in a polynomial ring. Comm. Algebra 47 (2019), no. 3, 1099–1101, [Lah19]: The conjecture holds true; proof uses theory of residual coordinates.

Applications: New tools

Bhatwadekar-Dutta, Kernel of locally nilpotent *R*-derivations of R[X, Y]. Trans. Amer. Math. Soc. 349 (1997), no. 8, 3303–3319 [BD97]:

Theorem 11 (Bhatwadekar-Dutta, [BD97])

 $\mathbb{Q} \hookrightarrow R$ a Noetherian domain with Qt(R) = K. $F \in R[X, Y]$ be a such that $K[X, Y] = K[F]^{[1]}$.

Then $R[X, Y] = R[F]^{[1]}$ if and only if $(F_X, F_Y)R[X, Y] = R[X, Y]$.

Proof: Technique: Residual coordinates. To show: if $(F_X, F_Y)R[X, Y] = R[X, Y]$, then *F* is a residual coord. Note: If *F* is a residual coord. of $R_P[X, Y]$ for all $P \in \text{Spec}(R)$, then *F* is a residual coord. of R[X, Y]. Assume *R* is local $\implies \dim(R) < \infty$. Rest of the proof uses induction on dim(R), mainly on dim 0 and dim 1.

Theorem 12 (Bhatwadelar-Dutta, [BD97], Daigle-Freudenburg Noetherian UFD-case, [DF98]) $\mathbb{Q} \hookrightarrow R$ a Noetherian domain

If $D \in LND_R(R[X, Y])$ is fixed point free, then D has a slice.

Prosenjit Das (IIST Trivandrum)

イロト 不同 トイヨト イヨト

= nar

Table of Contents

1 Notation and Definitions

- Particular Coordinates of R[X, Y] ([Bha88])
- 3 Residual coordinates of polynomial algebras ([BD93])
- 4 Residual coordinates of \mathbb{A}^3 -fibrations ([EK13])
- 5 Residual coordinates of affine fibrations ([DD14])
- 6 Residual coordinates of R^n are *m*-stable coordinates: Bounds on *m*

References

Residual coordinates of affine fibrations, [EK13]

Question: R a polynomial ring over a field $k \leftarrow \mathbb{Q}$. Are residual coordinates or stable coordinates of $R^{[3]}$ are coordinates? (Open) Are residual coordinates and stable coordinates of $R^{[3]}$ are the same? (Yes)

Definition 13 (Kahoui, [EK13])

R a ring, *A* an \mathbb{A}^n -fibration over *R* and $W \in A$. *W* is called a residual coord. of *A* if $A \otimes_R k(P) = (R[W] \otimes_R k(P))^{[n-1]}$ for all $P \in \operatorname{Spec}(R)$.

Theorem 14 (Kahoui, [EK13])

 $R = \mathbb{C}^{[n]}$ for some $n \ge 0$, A be an \mathbb{A}^3 -fibration over R and $W \in A$.

Then W is a residual coordinate of A iff W is a stable coordinate of A iff A is an \mathbb{A}^2 -fibration over R[W].

Question: If *R* is any ring containing \mathbb{Q} , whether residual coordinates of \mathbb{A}^3 -fibrations are stable coordinates.

Prosenjit Das (IIST Trivandrum)

Table of Contents

1 Notation and Definitions

- Residual coordinates of R[X, Y] ([Bha88])
- 3 Residual coordinates of polynomial algebras ([BD93])
- Assidual coordinates of A³-fibrations ([EK13])
- **5** Residual coordinates of affine fibrations ([DD14])
- D Residual coordinates of R^n are *m*-stable coordinates: Bounds on *m*

References

Residual coordinates of affine fibrations, [DD14]

Definition 15 (Das-Dutta, [DD14])

R a ring, *A* an *R*-algebra, $n \in \mathbb{N}$, $\underline{W} := (W_1, W_2, \dots, W_m)$ an *m*-tuple of elements in *A* which are algebraically independent over *R* such that $A \otimes_R k(P) = (R[\underline{W}] \otimes_R k(P))^{[n-m]}$ for all $P \in Spec(R)$. We shall call such an *m*-tuple \underline{W} to be an *m*-tuple residual coord. of *A* over *R*.

Their observations:

- If A is an $\mathbb{A}^{n-\text{fibration}}$ over R and \underline{W} a *m*-tuple residual coord. of A, then A is an \mathbb{A}^{n-m} -fibration over $R[\underline{W}]$. Further, $\Omega_{R}(A)$ is a stably free A-module if and only if $\Omega_{R[W]}(A)$ is a stably free A-module.
- *R* a Noetherian ring and *A* an A^{m+1}-fibration over *R*. Then <u>W</u> is an *m*-tuple residual coord. of *A* over *R* iff *A* is an A¹-fibration over *R*[<u>W</u>]. Consequently, if *R* is a Noetherian UFD, then <u>W</u> is an *m*-tuple residual coord. of *A* over *R* if and only if *A* = *R*[<u>W</u>]^[1] = *R*^[m+1].
- *R* a finite-dimensional polynomial algebra over a PID, *A* an \mathbb{A}^n -fibration over *R* and \underline{W} an *m*-tuple residual coord. of *A* over *R*. Then *A* is a stably polynomial algebra over $R[\underline{W}]$.

Prosenjit Das (IIST Trivandrum)

Recall ...

- $W \in R[X, Y]$ is called a residual coordinate if $R[X, Y] \otimes_R k(P) = (R[W] \otimes_R k(P))^{[1]} = k(P)[\overline{W}]^{[1]}$ for each $P \in \operatorname{Spec}(R)$.
- W is a residual coord. of R[X, Y]
- If either $\mathbb{Q} \hookrightarrow R$ or R_{red} is seminormal, then W is a residual coord $\Leftrightarrow R[X, Y] = R[W]^{[1]}$.
- $R = \mathbb{Q}[t]_{(t)}, F = t^2Y + (X + tY^2) + t(X + tY^2)^2$ is a residual coord of $R[X, Y] \implies R[X, Y] = R[F]^{[1]}.$

•
$$\underline{W} := (W_1, W_2, \cdots, W_m) \in R[X_1, X_2, \cdots, X_n]$$
 residual coord. tuple
• $\underline{W} := (W_1, W_2, \cdots, W_m) \in R[X_1, X_2, \cdots, X_n]^{[\ell]} = R[\underline{W}]^{[\ell+n-m]}.$
• $R[X_1, X_2, \cdots, X_n]^{[\ell]} = R[\underline{W}]^{[\ell+1]}$, if $n - m = 1$.

- If n m = 1 and either $\mathbb{Q} \hookrightarrow R$ or R_{red} is seminormal then \underline{W} is a residual coord tuple $\Leftrightarrow R[X_1, X_2, \cdots, X_n] = R[\underline{W}]^{[1]}$.
- $\mathbb{Q} \hookrightarrow R$ a Noetherian domain with Qt(R) = K. $F \in R[X, Y]$ be a such that $K[X, Y] = K[F]^{[1]}$. Then $R[X, Y] = R[F]^{[1]}$ if and only if $(F_X, F_Y)R[X, Y] = R[X, Y]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Recall ...

If <u>W</u> := (W₁, W₂, · · · , W_m) an *m*-tuple of elements in A which are algebraically independent over R such that A ⊗_R k(P) = (R[<u>W</u>] ⊗_R k(P))^[n-m] for all P ∈ Spec(R), then <u>W</u> is called an *m*-tuple residual coord. of A over R.

Let A is an \mathbb{A}^n -fibration over R and \underline{W} a m-tuple residual coord. of A, then

- A is an \mathbb{A}^{n-m} -fibration over $R[\underline{W}]$.
- $\Omega_R(A)$ is a stably free A-module if and only if $\Omega_{R[\underline{W}]}(A)$ is a stably free A-module.
- Let n m = 1 and R a Noetherian ring. Then \underline{W} is an *m*-tuple residual coord. of A over R iff A is an \mathbb{A}^1 -fibration over $R[\underline{W}]$.

naa

Residual coordinates of affine fibrations

Theorem 16 (Das-Dutta, [DD14])

R a Noetherian ring and *A* an \mathbb{A}^n -fibration over *R* such that $\Omega_R(A)$ is a stably free *A*-module. If \underline{W} is an *m*-tuple residual coord. of *A* over *R*, $A^{[\ell]} = R[\underline{W}]^{[n-m+\ell]}$ for some $\ell \in \mathbb{N}$. Further, if m = n - 1 and either $\mathbb{Q} \hookrightarrow R$ or R_{red} is seminormal, then \underline{W} is a residual coordinate of *A* if and only if $A = R[W]^{[n-1]}$.

Example of Hochster (Res. cord is stable coord. and not a coord.)

 $R := \mathbb{R}[X, Y, Z]/(X^2 + Y^2 + Z^2 - 1) = R[x, y, z]$. Define and *R*-LND on R[U, V, W] by $D_0(U) = x$, $D_0(V) = y$ and $D_0(W) = z$.

Check that $D_0(xU + yV + zW) = 1$, and therefore, by Slice Theorem we have $R[U, V, W] = A[xU + yV + zW] = A^{[1]}$ where $A := \text{Ker}(D_0)$. Let s = xU + yV + zW $R[s] \subset R[U, V, W] = A[s]$. Check that s is a residual coord. of $R[U, V, W] \implies s$ is a stable coord. of R[U, V, W]. However, it is not a coord. since $A \neq R^{[2]}$.

Application: A cancellation problem

Question: *R* a ring, *A* an *R*-algebra and A[T] = R[U, V, W]. Is then $A = R^{[2]}$? A possible approach: Find $F \in A[T] \setminus A$ such that $A[T] = R[U, V, W] = R[F]^{[2]}$. Identify *A* as a subring of $A[T]/(F) = R^{[2]}$. Then one explicitly constructs variables for *A* in terms of judiciously chosen variables for A[T]/(F) exploiting the fact that A[T]/(F) is a simple ring extension of *A*.

Such approach was taken by Sathaye ([Sat76]) and Russell ([Rus76] for the case F = bT - aand Wright [Wri78] for the case $F = bT^n - a$, $n \ge 2$. ([RS79])

Theorem 17 (Wright ([Wri78]), Das ([Das15]))

k a field, $ch(k) = p \ge 0$, A a normal affine k-domain. $a, b \in A, b \ne 0, A[T]/(bT^n - a) = k^{[2]}, n \ge 2, p \nmid n$

Then, there exist variables X, Y in $A[T]/(bT^n - a)$ such that Y is the image of T in $A[T]/(bT^n - a)$, $b \in k[X]$, $A = k[X, a] = k^{[2]}$ and $A[T] = k[X, bT^n - a, T] = k^{[3]}$.

Question: Does it hold over domains?

Theorem 18 (Das, [Das15])

k a field, $ch(k) = p \ge 0$, $k \hookrightarrow R$ a Noetherian normal domain, A a finitely generated flat R-domain with $\Omega_R(A)$ stably free A-module, $a, b \in A$ such that $A[T]/(bT^n - a) = R^{[2]}$, $n \ge 2$ and $p \nmid n$. Suppose, for each $P \in Spec(R)$, we have $A \otimes_R k(P)$ is normal and $b \nmid PA_P$.

Then, $A = R[a]^{[1]} = R^{[2]}$ and $A[T] = R[bT^n - a, T]^{[1]} = R^{[3]}$. When R is UFD, the hypothesis " $\Omega_R(A)$ stably free" may be dropped.

Corollary 19 (Das, [Das15])

k a field, $ch(k) = p \ge 0$, $k \leftrightarrow R$ a Noetherian normal domain, A and R-algebra such that $A[T] = R[bT^n - a]^{[2]} = R^{[3]}$ where $n \ge 2$ and $p \nmid n$

Then, $A = R[a]^{[1]} = R^{[2]}$ and $A[T] = R[bT^n - a, T]^{[1]}$.

Corollary 20 (Das, [Das15])

 $\mathbb{Q} \hookrightarrow R$ a Noetherian UFD, A an \mathbb{A}^2 -fibration over R, $a, b \in A, n \ge 2$ such that $A[T]/(bT^n - a) \otimes_R k(P) = k(P)^{[2]}$ for all $P \in Spec(R)$

Then, $A = R[a]^{[1]} = R^{[2]}$ and $A[T] = R[bT^n - a, T]^{[1]}$.

Application: Another cancellation problem

Question: Over any one dimensional domain $R \leftrightarrow \mathbb{Q}$, is a \mathbb{A}^2 -fibration A a polynomial algebra? **Comment in [AB97]:** " $\Omega_R(A)$ being not free is the only obstruction for the result of Sathaye to be not true for an arbitrary local domain R of dimension 1".

Improvement: If A is an \mathbb{A}^2 -fibration over a one dimensional Noetherian domain $R \leftrightarrow \mathbb{Q}$ such that $\Omega_R(A)$ is stably free A-module, then $A = R^{[2]}$. **Proof:** A is an \mathbb{A}^1 -fibration over a one dimensional Noetherian domain $R \leftrightarrow \mathbb{Q} \implies ([AB97])$ A is an \mathbb{A}^1 -fibration over R[W] for some $W \in A \implies ([DD14])W$ is a residual coord. of $A \implies (\Omega_R(A)$ stably free A-module, [DD14]) $A = R[W]^{[1]} = R^{[2]}$.

Theorem 21 (Kahoui-Ouali, [EKO14])

 $\mathbb{Q} \hookrightarrow R$ Noetherian one-dimensional domain and A an R-algebra.

If $A^{[n]} = R^{[n+2]}$, then $A = R^{[2]}$.

Proof:

 $\mathbb{Q} \hookrightarrow R$ Noetherian and $A^{[n]} = R^{[n+2]} \implies A$ is an \mathbb{A}^2 -fibration over $R \implies$ (by previous result) $A = R^{[2]}$.

Application: Fixed point free LND of \mathbb{A}^2 -fibration

Known: If $\mathbb{Q} \hookrightarrow R$ is a ring and D is a fixed point free R-LND of R[X, Y], then D has a slice, i.e., $R[X, Y] = \text{Ker}(D)^{[1]}$, and in that case $\text{Ker}(D) = R^{[1]}$ ([Ren68], [DF98], [BD97], [BvM01], [Ess07]). Question: What happens when R[X, Y] is replaced by an \mathbb{A}^2 -fibration?

Theorem 22 (Kahoui-Ouali, [EKO16])

 $\mathbb{O} \hookrightarrow R$ a ring and A an R-algebra such that $A^{[m]} = R^{[m+2]}$. If D is a fixed point free R-LND of A, then D has a slice, i.e., $A = Ker(D)^{[1]}$ and in that case $Ker(D) = R^{[1]}$ (i.e., $A = R^{[2]}$).

Proof: (Assume R domain; Qt(R) = K) By a reduction method assume R is a Notherian f.g. \mathbb{Q} -domain. Consider D_K on $A \otimes_R K = K^{[2]}$. Ker $(D_K) = K[U_1]$ for some $U_1 \in A$. Extend Dtrivially to \widetilde{D} on $A^{[m]} = A[T] = R[X] = R^{[m+2]}$. Compare with \widetilde{D} with $\mathcal{JD}_{(X)}(U_1, T, -)$ to see $\tilde{D} = \mathcal{JD}_{(X)}(U, T, -)$ where $aU = U_1 + r$ where $r \in R$ and $a \in A$. Now show that U is actually a residual coord, of $A \implies (A^{[m]} = R^{[m+2]}, [DD14]) A = R[U]^{[1]} = R^{[2]} \implies D$ has a slice.

Babu-Das, [BD21]: $\mathbb{O} \hookrightarrow R$ a Noetherian ring, A an \mathbb{A}^1 -fibration over R. If D is a fixed point free *R*-LND of *A*, then *D* has a slice, i.e., $A = \text{Ker}(D)^{[1]}$ and in that case Ker(D) is an \mathbb{A}^1 -fibration ・ロト ・ 回 ト ・ 三 ト ・ 三 ト ・ の へ ()

Application: New tool

Theorem 23 (Babu-Das, communicated)

 $\mathbb{Q} \hookrightarrow R$ a Noetherian domain, Qt(R) = K and A an R-algebra such that A is a retraction of $B = R[X_1, X_2, \cdots, X_n] = R^{[n]}$ and $tr.deg_R(A) = 2$.

If $F \in A$ be such that $A \otimes_R K = K[F]^{[1]}$ and $(F_{X_1}, F_{X_2}, \dots, F_{X_n})B = B$, then F is a residual coordinate of A.

Corollary 24 (Babu-Das, communicated)

$$\begin{split} & \bigcirc R \text{ a Noetherian domain, } Qt(R) = K, A \text{ an } R\text{-algebra such that} \\ & A^{[n]} = A[\underline{T}] = R[\underline{X}] = R^{[n+2]} \text{ where } \underline{X} = (X_1, X_2, \cdots, X_{n+2}) \text{ and } \underline{T} = (T_1, T_2, \cdots, T_n). \\ & \text{Let } F \in A \text{ be such that } A \otimes_R K = K[F]^{[1]}. \text{ Then, TFAE:.} \\ & (I) \quad (F_{X_1}, F_{X_2}, \cdots, F_{X_{n+2}})A[\underline{T}] = A[\underline{T}]. \\ & (II) \quad F \text{ is a residual coordinate of } A. \\ & (III) \quad A = R[F]^{[1]} = R^{[2]}. \\ & (IV) \quad \mathcal{JD}_{(X)}(F, T, -) \text{ is a fixed point free } R\text{-LND}. \end{split}$$

Table of Contents

1 Notation and Definitions

- Particular Coordinates of R[X, Y] ([Bha88])
- 3 Residual coordinates of polynomial algebras ([BD93])
- Residual coordinates of A³-fibrations ([EK13])
- 5 Residual coordinates of affine fibrations ([DD14])
- 6 Residual coordinates of R^n are *m*-stable coordinates: Bounds on *m*

References References

・ロト・日本・日本・日本・日本・日本

Residual coordinates of R^n are *m*-stable coordinates: Bounds on *m*

[BD93], **[DD14]**: Any residual coordinate of \mathbb{R}^n is a *m*-stable coordinate for some $m \in \mathbb{N}$.

Theorem 25 (Kahoui-Ouali, [EKO18])

(1): $\mathbb{Q} \hookrightarrow k$ algebraically closed field, R = k[X]. Then, any residual coordinate of $A = R^{[n]}$, where $n \ge 3$, is a 1-stable coordinate.

(II): $\mathbb{Q} \hookrightarrow R$ a Noetherian d-dimensional ring. Then, any residual coordinate of $A = R^{[n]}$ is a $((2^d - 1)n)$ -stable coordinate.

Theorem 26 (Dutta-Lahiri, [DL21])

(1): k algebraically closed field, R one-dimensional affine k-algebra, either ch(k) = 0 or or R_{red} is seminormal. Then, any residual coordinate of $R^{[n]}$, $n \ge 3$, is a 1-stable coordinate.

(II): If R is a Noetherian d-dimensional ring, then every residual coordinate of $R^{[n]}$ is a $((2^d - 1)n)$ -stable coordinate.

(III): k algebraically closed field, ch(k) = 0, R a f.g. k- algebra, dim(R) = d. Then every residual cooord. of $R^{[n]}$ is $(2^d - 1)n - 2^{d-1}(n-1) = (2^{d-1}(n+1) - n)$ -stable coordinate.

Residual coordinates of R^n are *m*-stable coordinates: Bounds on *m*

Theorem 27 (Kahoui-Essamaoui-Ouali, [EKEO21])

R a Noetherian, dim(R) = 1. Then the following holds.

- Every residual coord. of $A = R^{[2]}$ is a 1-stable coordinate.
- If R is an integral ring extension of $k^{[1]}$, where k is an algebraically closed field, then for every $n \ge 3$, residual coordinates of $R^{[n]}$ are 1-stable coordinates.
- If R is a complete local ring containing a field then for every n ≥ 3, residual coordinates of R^[n] are 1-stable coordinates.

Example of Bhatwadelar-Dutta

Example 28 (Bhatwadekar-Dutta, [BD94], Vénéreau (2001, thesis))

 $\mathbb{Q} \hookrightarrow k$ be a field, $R = k[\pi]_{(\pi)}$ and A = R[X, Y, Z]. Set $F := \pi^2 X + \pi Y(YZ + X + X^2) + Y$. One can check that $A \otimes_R k(P) = (R[F] \otimes_R k(P))^{[2]}$ for all $P \in \text{Spec}(R) \implies$ F is a residual coord. of $A \implies A^{[m]} = R[F]^{[m+2]}$, in fact, it can be shown that $A^{[1]} = R[F]^{[3]}$ (also follows from [EKEO21])

It is not known whether $A = R[F]^{[2]}$.

Define an *R*-LND *D* of *A* by $D(X) = Y^2$, D(Y) = 0 and $D(Z) = -(\pi + Y + 2XY)$. Then, $R[F] \subseteq \text{Ker}(D)$. It is known that $\text{Ker}(D) = R[F]^{[1]} = R^{[2]}$. We now show that *D* is not fixed point free.

On the contrary, assume that D is fixed point free, and therefore, there exists $f_1, f_2, f_3 \in R[X, Y, Z]$ such that $D(X)f_1 + D(Y)f_2 + D(Z)f_3 = 1$. Since D(Y) = 0, we have $D(X)f_1 + D(Z)f_3 = 1$, i.e., $Y^2f_1 - (\pi + Y + 2XY)f_3 = 1$. Hence, in A/YA = R[X, Z] we get $-\pi f_3 = 1$, i.e., π is a unit in R[X, Z] – a contradiction to the fact that π is a prime in R.

Thank you!

Table of Contents

1 Notation and Definitions

- Provide a strain and the strain a
- 3 Residual coordinates of polynomial algebras ([BD93])
- Residual coordinates of A³-fibrations ([EK13])
- 5 Residual coordinates of affine fibrations ([DD14])
- D Residual coordinates of R^n are *m*-stable coordinates: Bounds on *m*

References References

- [AB97] Teruo Asanuma and S. M. Bhatwadekar. "Structure of A²-fibrations over one-dimensional Noetherian domains". In: J. Pure Appl. Algebra 115.1 (1997), pp. 1–13.
- [AD21] Teruo Asanuma and Amartya Kumar Dutta. "On a residual coordinate which is a non-trivial line". In: *J. Pure Appl. Algebra* 225.4 (2021), Paper No. 106523, 6.
- [AEH72] Shreeram S. Abhyankar, Paul Eakin, and William Heinzer. "On the uniqueness of the coefficient ring in a polynomial ring". In: *J. Algebra* 23 (1972), pp. 310–342.
- [Asa87] Teruo Asanuma. "Polynomial fibre rings of algebras over Noetherian rings". In: Invent. Math. 87.1 (1987), pp. 101–127.
- [BBE03] Joost Berson, Jan Willem Bikker, and Arno van den Essen. "Adapting coordinates". In: J. Pure Appl. Algebra 184.2-3 (2003), pp. 165–174. ISSN: 0022-4049.
- [BD21] Janaki Raman Babu and Prosenjit Das. "Structure of A²-fibrations having fixed point free locally nilpotent derivations". In: J. Pure Appl. Algebra 225.12 (2021), Paper No. 106763, 12.

(ロ) (同) (三) (三) (三) (0) (0)

- [BD93] S. M. Bhatwadekar and Amartya K. Dutta. "On residual variables and stably polynomial algebras". In: *Comm. Algebra* 21.2 (1993), pp. 635–645.
- [BD94] S. M. Bhatwadekar and Amartya Kumar Dutta. "On affine fibrations". In: Commutative algebra (Trieste, 1992). World Sci. Publ., River Edge, NJ, 1994, pp. 1–17.
- [BD97] S. M. Bhatwadekar and Amartya K. Dutta. "Kernel of locally nilpotent *R*-derivations of *R*[*X*, *Y*]". In: *Trans. Amer. Math. Soc.* 349.8 (1997), pp. 3303–3319.
- [Bha88] S. M. Bhatwadekar. "Generalized epimorphism theorem". In: Proc. Indian Acad. Sci. Math. Sci. 98.2-3 (1988), pp. 109–116.
- [BvM01] Joost Berson, Arno van den Essen, and Stefan Maubach. "Derivations having divergence zero on R[X, Y].". In: Isr. J. Math. 124 (2001), pp. 115–124. ISSN: 0021-2172; 1565-8511/e.
- [Das15] Prosenjit Das. "On cancellation of variables of the form $bT^n a$ over affine normal domains". In: J. Pure Appl. Algebra 219.12 (2015), pp. 5280–5288.

Pres.		

- [DD11] Prosenjit Das and Amartya K. Dutta. "Planes of the form $b(X, Y)Z^n a(X, Y)$ over a DVR". In: J. Commut. Algebra 3.4 (2011), pp. 491–509.
- [DD14] Prosenjit Das and Amartya K. Dutta. "A note on residual variables of an affine fibration". In: *J. Pure Appl. Algebra* 218.10 (2014), pp. 1792–1799.
- [DF98] Daniel Daigle and Gene Freudenburg. "Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of $k[X_1, \dots, X_n]$ ". In: J. Algebra 204.2 (1998), pp. 353–371.
- [DL21] Amartya Kumar Dutta and Animesh Lahiri. "On residual and stable coordinates". In: J. Pure Appl. Algebra 225.10 (2021), Paper No. 106707, 8.
- [EK13] M'hammed El Kahoui. "On residual coordinates and stable coordinates of R^[3]". In: Arch. Math. (Basel) 100.1 (2013), pp. 35–41.
- [EKEO21] M'hammed El Kahoui, Najoua Essamaoui, and Mustapha Ouali. "Residual coordinates over one-dimensional rings". In: J. Pure Appl. Algebra 225.6 (2021), Paper No. 106629, 10.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- [EK014] M'hammed El Kahoui and Mustapha Ouali. "The cancellation problem over Noetherian one-dimensional domains". In: Kyoto J. Math. 54.1 (2014), pp. 157–165.
- [EK016] M'hammed El Kahoui and Mustapha Ouali. "A triviality criterion for A²-fibrations over a ring containing Q.". In: J. Algebra 459 (2016), pp. 272–279.
- [EK018] M'hammed El Kahoui and Mustapha Ouali. "A note on residual coordinates of polynomial rings". In: J. Commut. Algebra 10.3 (2018), pp. 317–326.
- [Ess07] Arno van den Essen. "Around the cancellation problem". In: Affine algebraic geometry. Osaka Univ. Press, Osaka, 2007, pp. 463–481.
- [Ham75] Eloise Hamann. "On the *R*-invariance of *R*[X]". In: J. Algebra 35 (1975), pp. 1–16. ISSN: 0021-8693.
- [Lah19] Animesh Lahiri. "A note on partial coordinate system in a polynomial ring". In: Comm. Algebra 47.3 (2019), pp. 1099–1101.
- [Ren68] Rudolf Rentschler. "Opérations du groupe additif sur le plan affine". In: *C. R. Acad. Sci. Paris Sér. A-B* 267 (1968), A384–A387.

(ロ) (同) (三) (三) (三) (0) (0)

[RS79] Peter Russell and Avinash Sathaye. "On finding and cancelling variables in k[X, Y, Z]". In: J. Algebra 57.1 (1979), pp. 151–166.

- [Rus76] Peter Russell. "Simple birational extensions of two dimensional affine rational domains". In: *Compositio Math.* 33.2 (1976), pp. 197–208.
- [Sat76] Avinash Sathaye. "On linear planes". In: Proc. Amer. Math. Soc. 56 (1976), pp. 1–7.
- [Wri78] David Wright. "Cancellation of variables of the form $bT^n a$ ". In: J. Algebra 52.1 (1978), pp. 94–100.