Residual coordinates of affine fibrations and their applications

Prosenjit Das

Department of Mathematics, Indian Institute of Space Science and Technology Thiruvananthapuram

ISI, 11-18 March 2023

Table of Contents

(1) Notation and Definitions

2 Residual coordinates of $R[X, Y]$ ([Bha88])
3 Residual coordinates of polynomial algebras ([BD93])
(4) Residual coordinates of A^{3}-fibrations ([EK13])
(5) Residual coordinates of affine fibrations ([DD14])
(6) Residual coordinates of R^{n} are m-stable coordinates: Bounds on m
(7) References

References

Notation

Notation

- $R:=\mathrm{A}$ commutative ring with unity.
- $A:=A n R$-algebra.
- $K:=$ Quotient field of R, whenever R is domain.
- $\operatorname{Spec}(R):=$ Collection of all prime ideals of R.
- $k(P):=$ The residue field $R_{P} / P R_{P}$, where $P \in \operatorname{Spec}(R)$.
- $R^{[n]}:=$ The polynomial algebra in n variables over R.
- $A=R^{[n]}:=A$ is isomorphic, as an R-algebra, to the polynomial algebra $R^{[n]}$.
- $\Omega_{R}(A):=$ module of differentials of A over R.

Definitions

Definitions

- $D: A \longrightarrow A$ is an R-derivation of A if $\forall a, b \in A$ and $r_{1}, r_{2} \in R$, $D\left(r_{1} a+r_{2} b\right)=r_{1} D(a)+r_{2} D(b)$ and $D(a b)=a D(b)+b D(a)$.
Let D be an R-derivation of A.
- D is called a locally nilpotent R-derivation (R-LND) of A if for each $x \in A$, there exists $n \in \mathbb{N}$ such that $D^{n}(x)=0$, i.e, $D^{n-1}(x) \in \operatorname{Ker}(D)$.
- D is said to have a slice $s \in A$ if $D(s)=1$, i.e., D is surjective.
- D is called fixed point free (FPF) if $D(A) A=A$.

Definitions

- A is said to be an \mathbb{A}^{n}-fibration over R if it is finitely generated and flat over R, and satisfies $A \otimes_{R} k(P)=k(P)^{[n]}$ for all $P \in \operatorname{Spec}(R)$.
- A is called stably polynomial over R if $A^{[m]}=R^{[n]}$ for some $m, n \in \mathbb{N}$.
- Let A be an \mathbb{A}^{n}-fibration over $R . F \in A$ is called a m-stable coordinate of A if $A^{[m]}=R[F]^{[m+n-1]}$.
- R is called a retract of A if there is an R-algebra surjection $\phi: A \longrightarrow R$ and $\left.\phi\right|_{R}=i d_{R}$.

Let $R \subseteq A$ be domains.

- R is called inert or factorially closed in A if $f, g \in A$ and $f g \in R$ implies that $f, g \in R$.

A few well-known results

- Slice Theorem: $\mathbb{Q} \hookrightarrow R$ a ring. If D is an R-LND of A with a slice s, then $A=\operatorname{Ker}(D)[s]=\operatorname{Ker}(D)^{[1]}$.
- If A is a domain, then $\operatorname{Ker}(D)$ is inert in A and $\operatorname{tr} \cdot \operatorname{deg}_{\operatorname{Ker}(D)}(A)=1$.
- If $\mathbb{Q} \hookrightarrow R$ is Noetherian and $A^{[m]}=R^{[m+2]}$, then A is an \mathbb{A}^{2}-fibration over R.

Table of Contents

（1）Notation and Definitions
（2）Residual coordinates of $R[X, Y]$（［Bha88］）
3 Residual coordinates of polynomial algebras（［BD93］）
（4）Residual coordinates of \mathbb{A}^{3}－fibrations（［EK13］）
（5）Residual coordinates of affine fibrations（［DD14］）
（6）Residual coordinates of R^{n} are m－stable coordinates：Bounds on m
（7）References
References

Residual coordinates of $R[X, Y]$ ([Bha88])

To generalized Abhyankar-Moh \& Suzuki Epimorphism Theorem

Definition (Bhatwadekar, [Bha88])

$W \in R[X, Y]$ is called a residual coordinate if
$R[X, Y] \otimes_{R} k(P)=\left(R[W] \otimes_{R} k(P)\right)^{[1]}=k(P)[\bar{W}]^{[1]}$ for each $P \in \operatorname{Spec}(R)$.

Example 1

$R=\mathbb{Q}[t]_{(t)}, F=t^{2} Y+\left(X+t Y^{2}\right)+t\left(X+t Y^{2}\right)^{2} \in R[X, Y]$
$\operatorname{Spec}(R)=\{0, t R\}$.
In $R[X, Y] \otimes_{R} k(0)=\mathbb{Q}(t)[X, Y]: \bar{F}$ is a variable of $\mathbb{Q}(t)[X, Y]$
$(X, Y) \longrightarrow\left(X+t Y^{2}, Y\right) \longrightarrow\left(X+t Y^{2}, t^{2} Y+\left(X+t Y^{2}\right)+t\left(X+t Y^{2}\right)^{2}\right)$
In $R[X, Y] \otimes_{R} k(t R)=R / t R[X, Y]=\mathbb{Q}[X, Y]: \bar{F}=X$ is a variable of $\mathbb{Q}[X, Y]$.
So, F is a residual variable of $R[X, Y]$. Question: Is F a variable of $R[X, Y]$?

Residual coordinates of $R[X, Y]$ ([Bha88])

His observations:

- If F is a residual coord. of $R[X, Y]$, then $R[X, Y] \otimes_{R[F]} k(Q)=k(Q)^{[1]}$ for all $Q \in \operatorname{Spec}(R[F])$.
- If F is a residual coord. of $R[X, Y]$, then $\Omega_{R[F]}(R[X, Y])$ is free of rank one over $R[X, Y]$.
- If R is a domain of characteristics zero and $R[X, Y] /(F)=R^{[1]}$, then F is a residual coord. of $R[X, Y]$.
- If $\operatorname{dim}(R)<\infty, R$ is a Noetherian ring and $R[X, Y] /(F)=R^{[1]}$, then $R[X, Y]$ is $R[F]$-flat.

Application: Generalized Epimorphism Theorem

Proving Generalized Epimorphism Theorem

Theorem 2 (Generalized Epimorphism Theorem, [Bha88])

R a ring, either contains \mathbb{Q} or R is a seminormal domain of characteristic zero.

$$
R[X, Y] /(F)=R^{[1]} \Longrightarrow R[X, Y]=R[F]^{[1]}
$$

Sketch of proof:

By proper reduction arguments can assume that
R is a finite dimensional Noetherian domain either contains \mathbb{Q} or is seminormal.
$R[X, Y] /(F)=R^{[1]} \Longrightarrow$

- F is a residual coord. of $R[X, Y] \Longrightarrow R[X, Y] \otimes_{R[F]} k(Q)=k(Q)^{[1]}$ for all $Q \in \operatorname{Spec}(R[F])$.
- $R[X, Y]$ is $R[F]$-flat.
$\Longrightarrow R[X, Y]$ is an \mathbb{A}^{1}-fibration over $R[F]$
$\Longrightarrow\left(\Omega_{R[F]}\left(R[X, Y]\right.\right.$ is free $R[X, Y]$-module) by Asanuma [Asa87]) $R[X, Y]^{[m]}=R[F]^{[m+1]}$
$\Longrightarrow(\mathbb{Q} \hookrightarrow R$ or R is seminormal, by Hamann $([\operatorname{Ham} 75])) R[X, Y]=R[F]^{[1]}$.

Table of Contents

（1）Notation and Definitions
（2）Residual coordinates of $R[X, Y]$（［Bha88］）
（3）Residual coordinates of polynomial algebras（［BD93］）
（4）Residual coordinates of \mathbb{A}^{3}－fibrations（［EK13］）
（5）Residual coordinates of affine fibrations（［DD14］）
（6）Residual coordinates of R^{n} are m－stable coordinates：Bounds on m
（7）References
References

Residual coordinates of polynomial algebras ([BD93])

Theorem 3 (Bhatwadekar-Dutta, [BD93])

R a Noetherian ring and $W \in R[X, Y]$. Then, the following are equivalent.
(1) W is a residual coord. in $R[X, Y]$.
(2) $R[X, Y]^{[m]}=R[W]^{[m+1]}$ for some $m \geq 0$.
(3) $R[W] \subseteq R[X, Y] \subseteq R[W]^{[n]}$ for some $n \in \mathbb{N}$.

Observation: If W is a residual coord. of $R[X, Y]$, then $R[X, Y]$ is $R[W]$-flat. Sketch of the proof:

Residual coordinates of polynomial algebras ([BD93])

Theorem 3 (Bhatwadekar-Dutta, [BD93])

R a Noetherian ring and $W \in R[X, Y]$. Then, the following are equivalent.
(1) W is a residual coord. in $R[X, Y]$.
(2) $R[X, Y]^{[m]}=R[W]^{[m+1]}$ for some $m \geq 0$.
(3) $R[W] \subseteq R[X, Y] \subseteq R[W]^{[n]}$ for some $n \in \mathbb{N}$.

Observation: If W is a residual coord. of $R[X, Y]$, then $R[X, Y]$ is $R[W]$-flat.

Sketch of the proof:

$(1) \Longrightarrow(2):$ Asanuma ([Asa87]).
$(2) \Longrightarrow$ (3): Trivial.
$(3) \Longrightarrow(1): R[W]$ is a retract of $R[X, Y]$ and therefore, the inclusions in
$R[W] \subseteq R[X, Y] \subseteq R[W]^{[n]}$ are preserved under $\otimes_{R} k(P)$ for each $P \in \operatorname{Spec}(R) \Longrightarrow$ $k(P)[W] \hookrightarrow k(P)[X, Y] \hookrightarrow k(P)[W]^{[n]}$ for each $P \in \operatorname{Spec}(R) \Longrightarrow$ (By
Abhyankar-Eakin-Heinzer, [AEH72]) $k(P)[X, Y]=k(P)[W]^{[1]}$ for each $P \in \operatorname{Spec}(R) \Longrightarrow W$ is a residual coord. of $R[X, Y]$.

Residual coordinates of $R[X, Y]$ are variables! [BD93]

Theorem 4 (Bhatwadekar-Dutta, [BD93])
R a Noetherian ring either containing \mathbb{Q} or $R_{\text {red }}$ is seminormal. $W \in R[X, Y]$ is residual coord.
(equiv. $R[W] \subseteq R[X, Y] \subseteq R[W]^{[\ell]}$) if and only if $R[X, Y]=R[W]^{[1] .}$
(Review $G E T$)

Corollary 5 (Bhatwadekar-Dutta, [BD93])

R a ring and $\underline{W}:=\left(W_{1}, W_{2}, \cdots, W_{m}\right) \in A:=R\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ where $m<n$ and $n \geq 2$.
(A) The following are equivalent if $m=n-1$:

- $A \otimes_{R} k(P)=\left(R[W] \otimes_{R} k(P)\right)^{[1]}$.
(3) $A^{[\ell]}=R[W]^{[1+\ell]}$ for some $\ell \geq 0$.
- $R[W] \subseteq A \subseteq R[W]^{\ell}$ for some $\ell \in \mathbb{N}$.

Further, (1) $\Longrightarrow(2) \Longrightarrow$ (3) holds even when $m \neq n-1$.
(B) If $m=n-1$ and either $\mathbb{Q} \hookrightarrow R$ or $R_{\text {red }}$ is seminormal, then
$R[\underline{W}] \subseteq A \subseteq R[\underline{W}]^{\ell}$ for some $\ell \in \mathbb{N} \Longrightarrow A=R[\underline{W}]^{[1]}$.

Examples

Example: Theorem 4 does not hold if R does not contain \mathbb{Q} or $R_{\text {red }}$ is seminormal.
$R=\mathbb{Z}_{(2)}[2 \sqrt{2}]$. If $t=\sqrt{2}$, then $t^{2}, t^{3} \in R$ and $t \notin R: R$ is not seminormal. $W=X-2 Y\left(t X-Y^{2}\right)+t\left(t X-Y^{2}\right)^{2}-t\left(Y-t\left(t X-Y^{2}\right)\right)^{4} \in R[X, Y] . W$ is a residual coord., but $R[X, Y] /(W) \neq R^{[1]}$ and therefore $R[X, Y] \neq R[W]^{[1]}$.

Question: If W is residual coord. of $R[X, Y]$ and $R[X, Y] /(W)=R^{[1]}$, is then $R[X, Y]=R[W]^{[1]}$?

Example: Theorem 4 does not hold under the setup $R[W] \subseteq R[X, Y, Z]\left(=R^{[3]}\right) \subseteq R[W]^{[n]}$:
$R=k$, a field.
$X=U^{2}+W, Y=V^{2}\left(U^{2}+W\right)+2 U V+1, Z=V\left(U^{2}+W\right)+U$
See that $W=X Y-Z^{2}$ and $k[W] \subset k[X, Y, Z] \subset k[U, V, W]$, but W is not a variable of $R[X, Y, Z]$.

Residual coordinates which is a line but not a variable

Question: R a Noetherian domain and $W \in R[X, Y]$ is a residual coord. of $R[X, Y]$. If $R[X, Y] /(W)=R^{[1]}$, is then W a variable of $R[X, Y]$?

Asanuma-Dutta, On a residual coordinate which is a non-trivial line. J. Pure Appl. Algebra 225 (2021), no. 4, Paper No. 106523, [AD21].

Theorem 6 (Asanuma-Dutta, [AD21])

k an infinite field, ch $(k)=p>2, R:=k\left[\left[t^{2}, t^{3}\right]\right], \widetilde{R}:=k[[t]]$, the normalisation of R, $I:=\left(t^{2}, t^{3}\right) R=t^{2} \widetilde{R}$, the conductor ideal of \widetilde{R} in R.

Let $\bar{\tau}:(X, Y) \mapsto\left(X+\bar{t} X^{p} Y^{p}, Y\right) \in A u t_{\widetilde{R} / C}(\widetilde{R} / C[X, Y])$. Then,

- There exists $\tau \in \operatorname{Aut}_{\widetilde{R}}(\widetilde{R}[X, Y])$ such that τ is a lift of $\bar{\tau}$.
- $\tau(Y) \in R[X, Y]$
- $\tau(Y)$ is a residual coordinate of $R[X, Y]$
- $R[X, Y] /(\tau(Y))=R^{[1]}$.
- $R[X, Y] /(\tau(Y)-1) \neq R^{[1]} \Longrightarrow \tau(Y)$ is not a coordinate of $R[X, Y]$.

Applications

Bhatwadekar-Dutta, On residual variables and stably polynomial algebras. Comm. Algebra 21 (1993), no. 2, 635-645, [BD93]:

Theorem 7 (Bhatwadekar-Dutta, [BD93])

R a Noetherian domain, ch $(R)=0$, either $\mathbb{Q} \hookrightarrow R$ or R is seminormal.
$R[X, Y, Z] /(F)=R[U, V]=R^{[2]}$ and there exists $W \in R[X, Y]$ such that $R[U, V]=R[\bar{W}]^{[1]}$. Then $R[X, Y, Z]=R[W, F]^{[1]}$.

Proof: If $F \in R[X, Y]$, then $(R[X, Y] /(F))[Z]=R^{[2]}$ and by Hamannn ([Ham75]) and Generalized Epimorphism theorem ([Bha88]) $R[X, Y]=R[F]^{[1]}$ and hence $R[X, Y, Z]=R[F, Z]^{[1]}$.
If $F \notin R[X, Y]$, then $R[W] \subseteq R[X, Y] \hookrightarrow R[X, Y, Z] /(F)=R[U, V]=R[W]^{[1]} \Longrightarrow$ ([BD93]) W is a residual coord. of $R[X, Y]$ and hence by [BD93] $R[X, Y]=R[W, V]$. Thus, $R[W][V, Z] /(F)=R[W]^{[1]} \Longrightarrow$ (Generalized Epimorphism theorem, [Bha88]) $R[W][V, Z]=R[W][F]^{[1]}$, i.e., $R[X, Y, Z]=R[W, F]^{[1]}$.

Applications

Das-Dutta, Planes of the form $b(X, Y) Z^{n}-a(X, Y)$ over a DVR. J. Commut. Algebra 3 (2011), no. 4, 491-509, [DD11]:

Das-Dutta extended an Epimorphism result of Wright over algebraically closed field to any field:

Theorem 8 (Das-Dutta, [DD11])

k a field, $c h(k)=p \geq 0, g:=b(X, Y) Z^{n}-a(X, Y) \in k[X, Y, Z], b \neq 0, p \nmid n$.
If $B:=k[X, Y, Z] /(g)=k^{[2]}$, then exist variables $U, V \in B$ such that V is the image of Z in $B, U \in k[X, Y], b \in k[U], k[X, Y]=k[U, a]$ and $k[X, Y, Z]=k[U, g, Z]$.

Using the theory of residual coord. the above result gets generalized to the ring case.

Theorem 9 (Das-Dutta, [DD11])

k a field and $k \hookrightarrow R$ a Noetherian domain. $c h(k)=p \geq 0$.
$g:=b(X, Y) Z^{n}-a(X, Y) \in R[X, Y, Z], b \neq 0, p \nmid n$.
If $R[X, Y, Z] /(g)=R^{[2]}$, then $R[X, Y]=R[a]^{[1]}$ and $R[X, Y, Z]=R[a, Z]^{[1]}=R[g, Z]^{[1]}$
provided either $\mathbb{Q} \hookrightarrow R$ or if R is seminormal.

Applications

Berson-Bikker-van den Essen: Adapting coordinates. J. Pure Appl. Algebra 184 (2003), no. 2-3, 165-174, [BBE03]:

Corollary 10 (Berson-Bikker-van den Essen, [BBE03])

R a ring. $F \in R[X, Y]$ and $a \in R$.
F is a coordinate of $R[X, Y]$ if and only if it remains coordinate in $R_{a}[X, Y]$ and in $R / a R[X, Y]$.

Conjecture: R a ring and $a \in R$. If $\left(F_{1}, F_{2}, \cdots, F_{n-1}\right) \in R\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ is a partial coordinate system of $R_{a}\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ and of $R / a R\left[X_{1}, X_{2}, \cdots, X_{n}\right]$, then ($F_{1}, F_{2}, \cdots, F_{n-1}$) is a partial coordinate-system of $R\left[X_{1}, X_{2}, \cdots, X_{n}\right]$.

In [BBE03]: shown that if a is a non-zero divisor, then the conjecture is true.
Lahiri, A note on partial coordinate system in a polynomial ring. Comm. Algebra 47 (2019), no. 3, 1099-1101, [Lah19]: The conjecture holds true; proof uses theory of residual coordinates.

Applications: New tools

Bhatwadekar-Dutta, Kernel of locally nilpotent R-derivations of $R[X, Y]$. Trans. Amer. Math. Soc. 349 (1997), no. 8, 3303-3319 [BD97]:

Theorem 11 (Bhatwadekar-Dutta, [BD97])

$\mathbb{Q} \hookrightarrow R$ a Noetherian domain with $Q t(R)=K . F \in R[X, Y]$ be a such that $K[X, Y]=K[F]^{[1]}$.
Then $R[X, Y]=R[F]^{[1]}$ if and only if $\left(F_{X}, F_{Y}\right) R[X, Y]=R[X, Y]$.
Proof: Technique: Residual coordinates. To show: if $\left(F_{X}, F_{Y}\right) R[X, Y]=R[X, Y]$, then F is a residual coord.. Note: If F is a residual coord. of $R_{P}[X, Y]$ for all $P \in \operatorname{Spec}(R)$, then F is a residual coord. of $R[X, Y]$. Assume R is local $\Longrightarrow \operatorname{dim}(R)<\infty$. Rest of the proof uses induction on $\operatorname{dim}(R)$, mainly on $\operatorname{dim} 0$ and $\operatorname{dim} 1$.

Theorem 12 (Bhatwadelar-Dutta, [BD97], Daigle-Freudenburg Noetherian UFD-case, [DF98])
$\mathbb{Q} \hookrightarrow R$ a Noetherian domain
If $D \in L N D_{R}(R[X, Y])$ is fixed point free, then D has a slice.

Table of Contents

（1）Notation and Definitions
（2）Residual coordinates of $R[X, Y]$（［Bha88］）
（3）Residual coordinates of polynomial algebras（［BD93］）
（4）Residual coordinates of \mathbb{A}^{3}－fibrations（［EK13］）
（5）Residual coordinates of affine fibrations（［DD14］）
（6）Residual coordinates of R^{n} are m－stable coordinates：Bounds on m
（7）References
References

Residual coordinates of affine fibrations, [EK13]

Question: R a polynomial ring over a field $k \hookleftarrow \mathbb{Q}$. Are residual coordinates or stable coordinates of $R^{[3]}$ are coordinates? (Open) Are residual coordinates and stable coordinates of $R^{[3]}$ are the same? (Yes)

Definition 13 (Kahoui, [EK13])

R a ring, A an \mathbb{A}^{n}-fibration over R and $W \in A$.
W is called a residual coord. of A if $A \otimes_{R} k(P)=\left(R[W] \otimes_{R} k(P)\right)^{[n-1]}$ for all $P \in \operatorname{Spec}(R)$.

Theorem 14 (Kahoui, [EK13])

$R=\mathbb{C}^{[n]}$ for some $n \geq 0, A$ be an \mathbb{A}^{3}-fibration over R and $W \in A$.
Then W is a residual coordinate of A iff W is a stable coordinate of A iff A is an \mathbb{A}^{2}-fibration over $R[W]$.

Question: If R is any ring containing \mathbb{Q}, whether residual coordinates of \mathbb{A}^{3}-fibrations are stable coordinates.

Table of Contents

（1）Notation and Definitions
（2）Residual coordinates of $R[X, Y]$（［Bha88］）
3 Residual coordinates of polynomial algebras（［BD93］）
4．Residual coordinates of \mathbb{A}^{3}－fibrations（［EK13］）
（5）Residual coordinates of affine fibrations（［DD14］）
6）Residual coordinates of R^{n} are m－stable coordinates：Bounds on m
（7）References
References

Residual coordinates of affine fibrations, [DD14]

Definition 15 (Das-Dutta, [DD14])

R a ring, A an R-algebra, $n \in \mathbb{N}, \underline{W}:=\left(W_{1}, W_{2}, \cdots, W_{m}\right)$ an m-tuple of elements in A which are algebraically independent over R such that $A \otimes_{R} k(P)=\left(R[\underline{W}] \otimes_{R} k(P)\right)^{[n-m]}$ for all $P \in \operatorname{Spec}(R)$. We shall call such an m-tuple \underline{W} to be an m-tuple residual coord. of A over R.

Their observations:

- If A is an \mathbb{A}^{n}-fibration over R and W a m-tuple residual coord. of A, then A is an \mathbb{A}^{n-m}-fibration over $R[W]$. Further, $\Omega_{R}(A)$ is a stably free A-module if and only if $\Omega_{R[W]}(A)$ is a stably free A-module.
- R a Noetherian ring and A an \mathbb{A}^{m+1}-fibration over R. Then \underline{W} is an m-tuple residual coord. of A over R iff A is an \mathbb{A}^{1}-fibration over $R[W]$. Consequently, if R is a Noetherian UFD, then W is an m-tuple residual coord. of A over R if and only if $A=R[\underline{W}]^{[1]}=R^{[m+1]}$.
- R a finite-dimensional polynomial algebra over a PID, A an \mathbb{A}^{n}-fibration over R and \underline{W} an m-tuple residual coord. of A over R. Then A is a stably polynomial algebra over $R[W]$.

Recall ...

- $W \in R[X, Y]$ is called a residual coordinate if $R[X, Y] \otimes_{R} k(P)=\left(R[W] \otimes_{R} k(P)\right)^{[1]}=k(P)[\bar{W}]^{[1]}$ for each $P \in \operatorname{Spec}(R)$.
- W is a residual coord. of $R[X, Y]$
(1) $\Longrightarrow R[X, Y]$ is an \mathbb{A}^{1}-fibration over $R[W]$.
(2) $\Leftrightarrow R[X, Y]^{[m]}=R[W]^{[n]} \Leftrightarrow R[W] \subseteq R[X, Y] \subseteq R[W]^{[n]}$.
- If either $\mathbb{Q} \hookrightarrow R$ or $R_{\text {red }}$ is seminormal, then W is a residual coord $\Leftrightarrow R[X, Y]=R[W]^{[1]}$.
- $R=\mathbb{Q}[t]_{(t)}, F=t^{2} Y+\left(X+t Y^{2}\right)+t\left(X+t Y^{2}\right)^{2}$ is a residual coord of $R[X, Y] \Longrightarrow$ $R[X, Y]=R[F]^{[1]}$.
- $\underline{W}:=\left(W_{1}, W_{2}, \cdots, W_{m}\right) \in R\left[X_{1}, X_{2}, \cdots, X_{n}\right]$ residual coord. tuple
(1) $\Longrightarrow R\left[X_{1}, X_{2}, \cdots, X_{n}\right]^{[l]}=R[W]^{[l+n-m]}$.
(2) $\Leftrightarrow R\left[X_{1}, X_{2}, \cdots, X_{n}\right]^{[l]}=R[\underline{W}]^{[l+1]}$, if $n-m=1$.
- If $n-m=1$ and either $\mathbb{Q} \hookrightarrow R$ or $R_{\text {red }}$ is seminormal then \underline{W} is a residual coord tuple \Leftrightarrow $R\left[X_{1}, X_{2}, \cdots, X_{n}\right]=R[\underline{W}]^{[1]}$.
- $\mathbb{Q} \hookrightarrow R$ a Noetherian domain with $\mathrm{Qt}(R)=K . F \in R[X, Y]$ be a such that $K[X, Y]=K[F]^{[1]}$. Then $R[X, Y]=R[F]^{[1]}$ if and only if $\left(F_{X}, F_{Y}\right) R[X, Y]=R[X, Y]$

Recall ...

- If $\underline{W}:=\left(W_{1}, W_{2}, \cdots, W_{m}\right)$ an m-tuple of elements in A which are algebraically independent over R such that $A \otimes_{R} k(P)=\left(R[W] \otimes_{R} k(P)\right)^{[n-m]}$ for all $P \in \operatorname{Spec}(R)$, then \underline{W} is called an m-tuple residual coord. of A over R.
Let A is an \mathbb{A}^{n}-fibration over R and \underline{W} a m-tuple residual coord. of A, then
- A is an \mathbb{A}^{n-m}-fibration over $R[\underline{W}]$.
- $\Omega_{R}(A)$ is a stably free A-module if and only if $\Omega_{R[W]}(A)$ is a stably free A-module.
- Let $n-m=1$ and R a Noetherian ring. Then \underline{W} is an m-tuple residual coord. of A over R iff A is an \mathbb{A}^{1}-fibration over $R[\underline{W}]$.

Residual coordinates of affine fibrations

Theorem 16 (Das-Dutta, [DD14])

R a Noetherian ring and A an \mathbb{A}^{n}-fibration over R such that $\Omega_{R}(A)$ is a stably free A-module. If \underline{W} is an m-tuple residual coord. of A over $R, A^{[\ell]}=R[\underline{W}]^{[n-m+\ell]}$ for some $\ell \in \mathbb{N}$.

Further, if $m=n-1$ and either $\mathbb{Q} \hookrightarrow R$ or $R_{r e d}$ is seminormal, then \underline{W} is a residual coordinate of A if and only if $A=R[\underline{W}]^{[n-1]}$.

Example of Hochster (Res. cord is stable coord. and not a coord.)

$R:=\mathbb{R}[X, Y, Z] /\left(X^{2}+Y^{2}+Z^{2}-1\right)=R[x, y, z]$. Define and R-LND on $R[U, V, W]$ by $D_{0}(U)=x, D_{0}(V)=y$ and $D_{0}(W)=z$.

Check that $D_{0}(x U+y V+z W)=1$, and therefore, by Slice Theorem we have $R[U, V, W]=A[x U+y V+z W]=A^{[1]}$ where $A:=\operatorname{Ker}\left(D_{0}\right)$. Let $s=x U+y V+z W$ $R[s] \subset R[U, V, W]=A[s]$. Check that s is a residual coord. of $R[U, V, W] \Longrightarrow s$ is a stable coord. of $R[U, V, W]$. However, it is not a coord. since $A \neq R^{[2]}$.

Application: A cancellation problem

Question: R a ring, A an R-algebra and $A[T]=R[U, V, W]$. Is then $A=R^{[2]}$? A possible approach: Find $F \in A[T] \backslash A$ such that $A[T]=R[U, V, W]=R[F]^{[2]}$. Identify A as a subring of $A[T] /(F)=R^{[2]}$. Then one explicitly constructs variables for A in terms of judiciously chosen variables for $A[T] /(F)$ exploiting the fact that $A[T] /(F)$ is a simple ring extension of A.

Such approach was taken by Sathaye ([Sat76]) and Russell ([Rus76] for the case $F=b T-a$ and Wright [Wri78] for the case $F=b T^{n}-a, n \geq 2$.

Theorem 17 (Wright ([Wri78]), Das ([Das15]))

k a field, $c h(k)=p \geq 0, A$ a normal affine k-domain. $a, b \in A, b \neq 0, A[T] /\left(b T^{n}-a\right)=k^{[2]}$, $n \geq 2, p \nmid n$
Then, there exist variables X, Y in $A[T] /\left(b T^{n}-a\right)$ such that Y is the image of T in $A[T] /\left(b T^{n}-a\right), b \in k[X], A=k[X, a]=k^{[2]}$ and $A[T]=k\left[X, b T^{n}-a, T\right]=k^{[3]}$.

Question: Does it hold over domains?

Theorem 18 (Das, [Das15])

k a field, ch(k) $=p \geq 0, k \hookrightarrow R$ a Noetherian normal domain, A a finitely generated flat R-domain with $\Omega_{R}(A)$ stably free A-module, $a, b \in A$ such that $A[T] /\left(b T^{n}-a\right)=R^{[2]}, n \geq 2$ and $p \nmid n$. Suppose, for each $P \in \operatorname{Spec}(R)$, we have $A \otimes_{R} k(P)$ is normal and $b \nmid P A_{P}$.
Then, $A=R[a]^{[1]}=R^{[2]}$ and $A[T]=R\left[b T^{n}-a, T\right]^{[1]}=R^{[3]}$. When R is UFD, the hypothesis " $\Omega_{R}(A)$ stably free" may be dropped.

Corollary 19 (Das, [Das15])

k a field, ch $(k)=p \geq 0, k \hookrightarrow R$ a Noetherian normal domain, A and R-algebra such that $A[T]=R\left[b T^{n}-a\right]^{[2]}=R^{[3]}$ where $n \geq 2$ and $p \nmid n$
Then, $A=R[a]^{[1]}=R^{[2]}$ and $A[T]=R\left[b T^{n}-a, T\right]^{[1]}$.
Corollary 20 (Das, [Das15])
$\mathbb{Q} \hookrightarrow R$ a Noetherian UFD, A an \mathbb{A}^{2}-fibration over $R, a, b \in A, n \geq 2$ such that $A[T] /\left(b T^{n}-a\right) \otimes_{R} k(P)=k(P)^{[2]}$ for all $P \in \operatorname{Spec}(R)$
Then, $A=R[a]^{[1]}=R^{[2]}$ and $A[T]=R\left[b T^{n}-a, T\right]^{[1]}$.

Application: Another cancellation problem

Question: Over any one dimensional domain $R \hookleftarrow \mathbb{Q}$, is a \mathbb{A}^{2}-fibration A a polynomial algebra? Comment in [AB97]: " $\Omega_{R}(A)$ being not free is the only obstruction for the result of Sathaye to be not true for an arbitrary local domain R of dimension 1 ".

Improvement: If A is an \mathbb{A}^{2}-fibration over a one dimensional Noetherian domain $R \hookleftarrow \mathbb{Q}$ such that $\Omega_{R}(A)$ is stably free A-module, then $A=R^{[2]}$.
Proof: A is an \mathbb{A}^{1}-fibration over a one dimensional Noetherian domain $R \hookleftarrow \mathbb{Q} \Longrightarrow$ ([AB97]) A is an \mathbb{A}^{1}-fibration over $R[W]$ for some $W \in A \Longrightarrow([D D 14]) W$ is a residual coord. of A $\Longrightarrow\left(\Omega_{R}(A)\right.$ stably free A-module, [DD14]) $A=R[W]^{[1]}=R^{[2]}$.

Theorem 21 (Kahoui-Ouali, [EKO14])

$\mathbb{Q} \hookrightarrow R$ Noetherian one-dimensional domain and A an R-algebra.
If $A^{[n]}=R^{[n+2]}$, then $A=R^{[2]}$.

Proof:

$\mathbb{Q} \hookrightarrow R$ Noetherian and $A^{[n]}=R^{[n+2]} \Longrightarrow A$ is an \mathbb{A}^{2}-fibration over $R \Longrightarrow$
(by previous result) $A=R^{[2]}$.

Application: Fixed point free LND of \mathbb{A}^{2}-fibration

Known: If $\mathbb{Q} \hookrightarrow R$ is a ring and D is a fixed point free R-LND of $R[X, Y]$, then D has a slice, i.e., $R[X, Y]=\operatorname{Ker}(D)^{[1]}$, and in that case $\operatorname{Ker}(D)=R^{[1]}$ ([Ren68], [DF98], [BD97], [BvM01], [Ess07]). Question: What happens when $R[X, Y]$ is replaced by an \mathbb{A}^{2}-fibration?

Theorem 22 (Kahoui-Ouali, [EKO16])

$\mathbb{Q} \hookrightarrow R$ a ring and A an R-algebra such that $A^{[m]}=R^{[m+2]}$. If D is a fixed point free $R-L N D$ of A, then D has a slice, i.e., $A=\operatorname{Ker}(D)^{[1]}$ and in that case $\operatorname{Ker}(D)=R^{[1]}$ (i.e., $A=R^{[2]}$).

Proof:(Assume R domain; $\mathrm{Qt}(R)=K$) By a reduction method assume R is a Notherian f.g. \mathbb{Q}-domain. Consider D_{K} on $A \otimes_{R} K=K^{[2]}$. $\operatorname{Ker}\left(D_{K}\right)=K\left[U_{1}\right]$ for some $U_{1} \in A$. Extend D trivially to \widetilde{D} on $A^{[m]}=A[\underline{T}]=R[\underline{X}]=R^{[m+2]}$. Compare with \widetilde{D} with $\mathcal{J}_{(\underline{X})}\left(U_{1}, \underline{T},-\right)$ to see $\widetilde{D}=\mathcal{J}^{(\underline{X})}(U, \underline{T},-)$ where $a U=U_{1}+r$ where $r \in R$ and $a \in A$. Now show that U is actually a residual coord. of $A \Longrightarrow\left(A^{[m]}=R^{[m+2]},[D D 14]\right) A=R[U]^{[1]}=R^{[2]} \Longrightarrow D$ has a slice.

Babu-Das, [BD21]: $\mathbb{Q} \hookrightarrow R$ a Noetherian ring, A an \mathbb{A}^{1}-fibration over R. If D is a fixed point free R-LND of A, then D has a slice, i.e., $A=\operatorname{Ker}(D)^{[1]}$ and in that case $\operatorname{Ker}(D)$ is an \mathbb{A}^{1}-fibration.

Application: New tool

Theorem 23 (Babu-Das, communicated)

$\mathbb{Q} \hookrightarrow R$ a Noetherian domain, $Q t(R)=K$ and A an R-algebra such that A is a retraction of $B=R\left[X_{1}, X_{2}, \cdots, X_{n}\right]=R^{[n]}$ and $\operatorname{tr} \cdot \operatorname{deg}_{R}(A)=2$.
If $F \in A$ be such that $A \otimes_{R} K=K[F]^{[1]}$ and $\left(F_{X_{1}}, F_{X_{2}}, \cdots, F_{X_{n}}\right) B=B$, then F is a residual coordinate of A.

Corollary 24 (Babu-Das, communicated)

$\mathbb{Q} \hookrightarrow R$ a Noetherian domain, $Q t(R)=K, A$ an R-algebra such that
$A^{[n]}=A[\underline{T}]=R[\underline{X}]=R^{[n+2]}$ where $\underline{X}=\left(X_{1}, X_{2}, \cdots, X_{n+2}\right)$ and $\underline{I}=\left(T_{1}, T_{2}, \cdots, T_{n}\right)$. Let $F \in A$ be such that $A \otimes_{R} K=K[F]^{[1]}$. Then, TFAE:
(I) $\left(F_{X_{1}}, F_{X_{2}}, \cdots, F_{X_{n+2}}\right) A[T]=A[T]$.
(II) F is a residual coordinate of A.
(III) $A=R[F]^{[1]}=R^{[2]}$.
(IV) $\mathcal{J}_{(\underline{X})}(F, \underline{I},-)$ is a fixed point free $R-L N D$.

Table of Contents

(1) Notation and Definitions
(2) Residual coordinates of $R[X, Y]$ ([Bha88])

3 Residual coordinates of polynomial algebras ([BD93])
4. Residual coordinates of \mathbb{A}^{3}-fibrations ([EK13])
(5) Residual coordinates of affine fibrations ([DD14])

6 Residual coordinates of R^{n} are m-stable coordinates: Bounds on m
(7) References

References

Residual coordinates of R^{n} are m-stable coordinates: Bounds on m

[BD93], [DD14]: Any residual coordinate of R^{n} is a m-stable coordinate for some $m \in \mathbb{N}$.

Theorem 25 (Kahoui-Ouali, [EKO18])

(I): $\mathbb{Q} \hookrightarrow k$ algebraically closed field, $R=k[X]$. Then, any residual coordinate of $A=R^{[n]}$, where $n \geq 3$, is a 1 -stable coordinate.
(II): $\mathbb{Q} \hookrightarrow R$ a Noetherian d-dimensional ring. Then, any residual coordinate of $A=R^{[n]}$ is a (($\left.\left.2^{d}-1\right) n\right)$-stable coordinate.

Theorem 26 (Dutta-Lahiri, [DL21])

(I): k algebraically closed field, R one-dimensional affine k-algebra, either $c h(k)=0$ or or $R_{\text {red }}$ is seminormal. Then, any residual coordinate of $R^{[n]}, n \geq 3$, is a 1 -stable coordinate.
(II): If R is a Noetherian d-dimensional ring, then every residual coordinate of $R^{[n]}$ is a ((2 $\left.\left.2^{d}-1\right) n\right)$-stable coordinate.
(III): k algebraically closed field, $c h(k)=0, R$ a f.g. k - algebra, $\operatorname{dim}(R)=d$. Then every residual cooord. of $R^{[n]}$ is $\left(2^{d}-1\right) n-2^{d-1}(n-1)=\left(2^{d-1}(n+1)-n\right)$-stable coordinate.

Residual coordinates of R^{n} are m-stable coordinates: Bounds on m

Theorem 27 (Kahoui-Essamaoui-Ouali, [EKEO21])

R a Noetherian, $\operatorname{dim}(R)=1$. Then the following holds.
(1) Every residual coord. of $A=R^{[2]}$ is a 1 -stable coordinate.
(2) If R is an integral ring extension of $k^{[1]}$, where k is an algebraically closed field, then for every $n \geq 3$, residual coordinates of $R^{[n]}$ are 1 -stable coordinates.
(3) If R is a complete local ring containing a field then for every $n \geq 3$, residual coordinates of $R^{[n]}$ are 1-stable coordinates.

Example of Bhatwadelar-Dutta

Example 28 (Bhatwadekar-Dutta, [BD94], Vénéreau (2001, thesis))

$\mathbb{Q} \hookrightarrow k$ be a field, $R=k[\pi]_{(\pi)}$ and $A=R[X, Y, Z]$. Set $F:=\pi^{2} X+\pi Y\left(Y Z+X+X^{2}\right)+Y$. One can check that $A \otimes_{R} k(P)=\left(R[F] \otimes_{R} k(P)\right)^{[2]}$ for all $P \in \operatorname{Spec}(R) \Longrightarrow$ F is a residual coord. of $A \Longrightarrow A^{[m]}=R[F]^{[m+2]}$, in fact, it can be shown that $A^{[1]}=R[F]^{[3]}$ (also follows from [EKEO21])
It is not known whether $A=R[F]^{[2]}$.
Define an R-LND D of A by $D(X)=Y^{2}, D(Y)=0$ and $D(Z)=-(\pi+Y+2 X Y)$.
Then, $R[F] \subseteq \operatorname{Ker}(D)$. It is known that $\operatorname{Ker}(D)=R[F]^{[1]}=R^{[2]}$. We now show that D is not fixed point free.

On the contrary, assume that D is fixed point free, and therefore, there exists $f_{1}, f_{2}, f_{3} \in R[X, Y, Z]$ such that $D(X) f_{1}+D(Y) f_{2}+D(Z) f_{3}=1$.
Since $D(Y)=0$, we have $D(X) f_{1}+D(Z) f_{3}=1$, i.e., $Y^{2} f_{1}-(\pi+Y+2 X Y) f_{3}=1$. Hence, in $A / Y A=R[X, Z]$ we get $-\pi f_{3}=1$, i.e., π is a unit in $R[X, Z]-$ a contradiction to the fact that π is a prime in R.

Thank you!

Table of Contents

(1) Notation and Definitions
(2) Residual coordinates of $R[X, Y]$ ([Bha88])

3 Residual coordinates of polynomial algebras ([BD93])
4. Residual coordinates of \mathbb{A}^{3}-fibrations ([EK13])
(5) Residual coordinates of affine fibrations ([DD14])
6. Residual coordinates of R^{n} are m-stable coordinates: Bounds on m
(7) References

References
[AB97] Teruo Asanuma and S. M. Bhatwadekar. "Structure of \mathbf{A}^{2}-fibrations over one-dimensional Noetherian domains". In: J. Pure Appl. Algebra 115.1 (1997), pp. 1-13.
[AD21] Teruo Asanuma and Amartya Kumar Dutta. "On a residual coordinate which is a non-trivial line". In: J. Pure Appl. Algebra 225.4 (2021), Paper No. 106523, 6.
[AEH72] Shreeram S. Abhyankar, Paul Eakin, and William Heinzer. "On the uniqueness of the coefficient ring in a polynomial ring". In: J. Algebra 23 (1972), pp. 310-342.
[Asa87] Teruo Asanuma. "Polynomial fibre rings of algebras over Noetherian rings". In: Invent. Math. 87.1 (1987), pp. 101-127.
[BBE03] Joost Berson, Jan Willem Bikker, and Arno van den Essen. "Adapting coordinates". In: J. Pure Appl. Algebra 184.2-3 (2003), pp. 165-174. ISSN: 0022-4049.
[BD21] Janaki Raman Babu and Prosenjit Das. "Structure of \mathbb{A}^{2}-fibrations having fixed point free locally nilpotent derivations". In: J. Pure Appl. Algebra 225.12 (2021), Paper No. 106763, 12.
[BD93] S. M. Bhatwadekar and Amartya K. Dutta. "On residual variables and stably polynomial algebras". In: Comm. Algebra 21.2 (1993), pp. 635-645.
[BD94] S. M. Bhatwadekar and Amartya Kumar Dutta. "On affine fibrations". In: Commutative algebra (Trieste, 1992). World Sci. Publ., River Edge, NJ, 1994, pp. 1-17.
[BD97] S. M. Bhatwadekar and Amartya K. Dutta. "Kernel of locally nilpotent R-derivations of $R[X, Y]$ ". In: Trans. Amer. Math. Soc. 349.8 (1997), pp. 3303-3319.
[Bha88] S. M. Bhatwadekar. "Generalized epimorphism theorem". In: Proc. Indian Acad. Sci. Math. Sci. 98.2-3 (1988), pp. 109-116.
[BvM01] Joost Berson, Arno van den Essen, and Stefan Maubach. "Derivations having divergence zero on $R[X, Y]$.". In: Isr. J. Math. 124 (2001), pp. 115-124. ISSN: 0021-2172; 1565-8511/e.
[Das15] Prosenjit Das. "On cancellation of variables of the form $b T^{n}$ - a over affine normal domains". In: J. Pure Appl. Algebra 219.12 (2015), pp. 5280-5288.
[DD11] Prosenjit Das and Amartya K. Dutta. "Planes of the form $b(X, Y) Z^{n}-a(X, Y)$ over a DVR". In: J. Commut. Algebra 3.4 (2011), pp. 491-509.
[DD14] Prosenjit Das and Amartya K. Dutta. "A note on residual variables of an affine fibration". In: J. Pure Appl. Algebra 218.10 (2014), pp. 1792-1799.
[DF98] Daniel Daigle and Gene Freudenburg. "Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of $k\left[X_{1}, \cdots, X_{n}\right]$ ". In: J. Algebra 204.2 (1998), pp. 353-371.
[DL21] Amartya Kumar Dutta and Animesh Lahiri. "On residual and stable coordinates". In: J. Pure Appl. Algebra 225.10 (2021), Paper No. 106707, 8.
[EK13] M'hammed El Kahoui. "On residual coordinates and stable coordinates of $R^{[3]}$ ". In: Arch. Math. (Basel) 100.1 (2013), pp. 35-41.
[EKEO21] M'hammed El Kahoui, Najoua Essamaoui, and Mustapha Ouali. "Residual coordinates over one-dimensional rings". In: J. Pure Appl. Algebra 225.6 (2021), Paper No. 106629, 10.
[EKO14] M'hammed El Kahoui and Mustapha Ouali. "The cancellation problem over Noetherian one-dimensional domains". In: Kyoto J. Math. 54.1 (2014), pp. 157-165.
[EKO16] M'hammed El Kahoui and Mustapha Ouali. "A triviality criterion for \mathbb{A}^{2}-fibrations over a ring containing \mathbb{Q}.". In: J. Algebra 459 (2016), pp. 272-279.
[EKO18] M'hammed El Kahoui and Mustapha Ouali. "A note on residual coordinates of polynomial rings". In: J. Commut. Algebra 10.3 (2018), pp. 317-326.
[Ess07] Arno van den Essen. "Around the cancellation problem". In: Affine algebraic geometry. Osaka Univ. Press, Osaka, 2007, pp. 463-481.
[Ham75] Eloise Hamann. "On the R-invariance of $R[X]$ ". In: J. Algebra 35 (1975), pp. 1-16. ISSN: 0021-8693.
[Lah19] Animesh Lahiri. "A note on partial coordinate system in a polynomial ring". In: Comm. Algebra 47.3 (2019), pp. 1099-1101.
[Ren68] Rudolf Rentschler. "Opérations du groupe additif sur le plan affine". In: C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A384-A387.
[RS79] Peter Russell and Avinash Sathaye. "On finding and cancelling variables in k[X, Y, Z]". In: J. Algebra 57.1 (1979), pp. 151-166.
[Rus76] Peter Russell. "Simple birational extensions of two dimensional affine rational domains". In: Compositio Math. 33.2 (1976), pp. 197-208.
[Sat76] Avinash Sathaye. "On linear planes". In: Proc. Amer. Math. Soc. 56 (1976), pp. 1-7.
[Wri78] David Wright. "Cancellation of variables of the form $b T^{n}-a$ ". In: J. Algebra 52.1 (1978), pp. 94-100.

